Mellin transform of log-Lipschitz functions and equivalence of K-functionals and modulus of smoothness generated by the Mellin Steklov operator

被引:0
|
作者
A. Bouhlal
机构
[1] Université Chouaïb Doukkali,Laboratory: Recherche en Gestion, Economie et Sciences Sociales, Faculté des Sciences Juridiques Economiques et Sociales
关键词
Mellin transforms; Complex-valued function; Mellin derivative; Fourier analysis; 44A05; 28A10; 30D20; 65T99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we examine the order of magnitude of the Mellin transform for complex-valued functions belonging to the log-Lipschitz class. In addition, in the intersection of the spaces Xc1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{c}^{1}$$\end{document} and Xc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{c}^{2}$$\end{document}, using the Mellin Steklov operator, we construct the Mellin modulus of smoothness, and also using the Mellin derivative we define the Mellin K -functional. The second main result of our article is the proof of the equivalence between Mellin K-functionals and Mellin modulus of smoothness.
引用
收藏
页码:1239 / 1249
页数:10
相关论文
共 22 条