Test on the linear combinations of mean vectors in high-dimensional data

被引:0
|
作者
Huiqin Li
Jiang Hu
Zhidong Bai
Yanqing Yin
Kexin Zou
机构
[1] Jiangsu Normal University,School of Mathematics and Statistics
[2] Northeast Normal University,Key Laboratory for Applied Statistics of MOE and School of Mathematics and Statistics
来源
TEST | 2017年 / 26卷
关键词
Hypothesis test; High-dimensional data; Mean vectors; Bonferroni correction; Primary 62H15; Secondary 62E20;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we propose a procedure for simultaneous testing l(l≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l (l\ge 1)$$\end{document} linear relations on k(k≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k(k\ge 2)$$\end{document} high-dimensional mean vectors with heterogeneous covariance matrices, which extends the result derived by Nishiyama et al. (J Stat Plan Inference 143(11):1898–1911, 2013) and does not need the normality assumption. The newly proposed test statistic is motivated by Bai and Saranadasa (Statistica Sinica 6(2):311–329, 1996) and Chen and Qin (Ann Stat 38(2):808–835, 2010). As a special case, our result could be applied to multivariate analysis of variance, that is, testing the equality of k high-dimensional mean vectors.
引用
收藏
页码:188 / 208
页数:20
相关论文
共 50 条
  • [1] Test on the linear combinations of mean vectors in high-dimensional data
    Li, Huiqin
    Hu, Jiang
    Bai, Zhidong
    Yin, Yanqing
    Zou, Kexin
    TEST, 2017, 26 (01) : 188 - 208
  • [2] Test on the linear combinations of covariance matrices in high-dimensional data
    Zhidong Bai
    Jiang Hu
    Chen Wang
    Chao Zhang
    Statistical Papers, 2021, 62 : 701 - 719
  • [3] Test on the linear combinations of covariance matrices in high-dimensional data
    Bai, Zhidong
    Hu, Jiang
    Wang, Chen
    Zhang, Chao
    STATISTICAL PAPERS, 2021, 62 (02) : 701 - 719
  • [4] Test for high-dimensional linear hypothesis of mean vectors via random integration
    Li, Jianghao
    Hong, Shizhe
    Niu, Zhenzhen
    Bai, Zhidong
    STATISTICAL PAPERS, 2025, 66 (01)
  • [5] Diagonal likelihood ratio test for equality of mean vectors in high-dimensional data
    Hu, Zongliang
    Tong, Tiejun
    Genton, Marc G.
    BIOMETRICS, 2019, 75 (01) : 256 - 267
  • [6] Adaptive test for mean vectors of high-dimensional time series data with factor structure
    Zhang, Mingjuan
    Zhou, Cheng
    He, Yong
    Zhang, Xinsheng
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (04) : 450 - 470
  • [7] Adaptive test for mean vectors of high-dimensional time series data with factor structure
    Mingjuan Zhang
    Cheng Zhou
    Yong He
    Xinsheng Zhang
    Journal of the Korean Statistical Society, 2018, 47 : 450 - 470
  • [8] Mean test for high-dimensional data based on covariance matrix with linear structures
    Wang, Guanpeng
    Wang, Yuyuan
    Cui, Hengjian
    METRIKA, 2024,
  • [9] Multiple-Splitting Projection Test for High-Dimensional Mean Vectors
    Liu, Wanjun
    Yu, Xiufan
    Li, Runze
    Journal of Machine Learning Research, 2022, 23
  • [10] A rank-based high-dimensional test for equality of mean vectors
    Ouyang, Yanyan
    Liu, Jiamin
    Tong, Tiejun
    Xu, Wangli
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 173