Grid-Characteristic Numerical Method for Low-Velocity Impact Testing of Fiber-Metal Laminates

被引:8
|
作者
Beklemysheva K.A. [1 ]
Vasyukov A.V. [1 ]
Kazakov A.O. [1 ]
Petrov I.B. [1 ]
机构
[1] Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast
基金
俄罗斯科学基金会;
关键词
delamination; fiber-metal laminates; Grid-characteristic method; low-velocity impact;
D O I
10.1134/S1995080218070065
中图分类号
学科分类号
摘要
The grid-characteristic numerical method (GCM) for hyperbolic equations systems is applied in many science fields—gas dynamics, hydrodynamics, plasma dynamics, etc. Its application for problems of dynamics of deformable solids is less popular, especially in comparison with finite elements methods. GCM shows good results and high performance for elastic wave problems in the approximation of small deformations—seismic survey and ultrasound non-destructive testing in medicine, aviation and railway industry. Low-velocity impacts (hail, dropped tool, bird strike, etc.) are one of the most dangerous load types for polymer composites. They cause barely visible impact damage (BVID) that can only be detected by a thorough ultrasound testing, but severely reduces the residual strength of the material, especially for a compression load along the surface. This testing increases the operating cost, and its necessity can be easily missed, which greatly reduces the reliability of polymer composites. Hybrid fiber-metal composites (GLARE, ARALL, titanium composite laminates) were developed to unify the advantageous properties of polymer composites and metal. The addition of a thin metal layer (1–2 mm) helps to reduce the impact vulnerability of polymer composites in case of a penetration or significant deformations of the material. The application of GCM for low-velocity impact problems can help to explain the damage pattern in fiber-metal composites in case of low-velocity strike, including delamination effects, by modelling elastic wave processes in the complex anisotropicmedium. This article contains the brief description of the GCM and numerical results that were obtained for model problems of a low-velocity impact on titanium composite laminates. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:874 / 883
页数:9
相关论文
共 50 条
  • [1] Determining effects of impact loading on residual strength of fiber-metal laminates with grid-characteristic numerical method
    Katerina BEKLEMYSHEVA
    Vasily GOLUBEV
    Igor PETROV
    Alexey VASYUKOV
    Chinese Journal of Aeronautics , 2021, (07) : 1 - 12
  • [2] Determining effects of impact loading on residual strength of fiber-metal laminates with grid-characteristic numerical method
    Beklemysheva, Katerina
    Golubev, Vasily
    Petrov, Igor
    Vasyukov, Alexey
    CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (07) : 1 - 12
  • [3] The low-velocity impact response of fiber-metal laminates
    Fan, J.
    Cantwell, W. J.
    Guan, Z. W.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (01) : 26 - 35
  • [4] Oblique Low-Velocity Impact on Fiber-Metal Laminates
    M. Heydari-Meybodi
    H. Mohammadkhani
    M. R. Bagheri
    Applied Composite Materials, 2017, 24 : 611 - 623
  • [5] Oblique Low-Velocity Impact on Fiber-Metal Laminates
    Heydari-Meybodi, M.
    Mohammadkhani, H.
    Bagheri, M. R.
    APPLIED COMPOSITE MATERIALS, 2017, 24 (03) : 611 - 623
  • [6] Low-velocity impact response of fiber-metal laminates - A theoretical approach
    Zhu, S.
    Chai, G. B.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2014, 228 (04) : 301 - 311
  • [7] Numerical Analysis of Damage Mechanism on Low-velocity Impact of GLARE 5 Fiber-metal Laminates
    Wan, Yun
    Tong, Gusheng
    Chen, Shenshen
    Huang, Yonghu
    JOURNAL OF POLYMER MATERIALS, 2017, 34 (03): : 539 - 552
  • [8] Dynamic response of fiber-metal laminates (FMLs) subjected to low-velocity impact
    Payeganeh, G. H.
    Ghasemi, F. Ashenai
    Malekzadeh, K.
    THIN-WALLED STRUCTURES, 2010, 48 (01) : 62 - 70
  • [9] Low-velocity impact behavior of hybrid CFRP-elastomer-metal laminates in comparison with conventional fiber-metal laminates
    Li, Zhongyu
    Zhang, Junyuan
    Jackstadt, Alexander
    Kaerger, Luise
    COMPOSITE STRUCTURES, 2022, 287
  • [10] Low-velocity impact response of fiber-metal laminates consisting of different standard GLARE grades
    Bikakis, George S. E.
    Karaiskos, Evangelos
    Sideridis, Emilios P.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2016, 35 (13) : 1029 - 1040