Numerical solution of non-Newtonian nanofluid flow over a stretching sheet

被引:0
|
作者
S. Nadeem
Rizwan Ul Haq
Z. H. Khan
机构
[1] Quaid-I-Azam University 45320,Department of Mathematics
[2] Peking University,School of Mathematical Sciences
来源
Applied Nanoscience | 2014年 / 4卷
关键词
Jeffrey fluid model; Nanofluid flow; Stretching sheet; Brownian motion; Thermophoresis; Numerical solution;
D O I
暂无
中图分类号
学科分类号
摘要
The steady flow of a Jeffrey fluid model in the presence of nano particles is studied. Similarity transformation is used to convert the governing partial differential equations to a set of coupled nonlinear ordinary differential equations which are solved numerically. Behavior of emerging parameters is presented graphically and discussed for velocity, temperature and nanoparticles fraction. Variation of the reduced Nusselt and Sherwood number against physical parameters is presented graphically. It was found that reduced Nusselt number is decreasing function and reduced Sherwood number is increasing function of Brownian parameter Nb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{\text{b}} $$\end{document} and thermophoresis parameter Nt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{\text{t}}$$\end{document}.
引用
收藏
页码:625 / 631
页数:6
相关论文
共 50 条