Gosset’s figure in a Clifford algebra

被引:0
|
作者
Richter D.A. [1 ]
机构
[1] Department of Mathematics, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, 49008-5248, MI
关键词
Clifford Algebra; Popular Science; Quadratic Form; Semiregular Polytope; Vector Space;
D O I
10.1007/s00006-004-0014-4
中图分类号
学科分类号
摘要
This note describes a way to realize a “projective” version of Gosset’s 240-vertex semiregular polytope 421 using the Clifford algebra Cl(8) generated by an 8-dimensional vector space equipped with a non-degenerate quadratic form. The 120 vertices of this projective Gosset figure are also seen to coincide with a particular basis for the Lie algebra so(16). © 2004, Birkhäuser Verlag, Basel.
引用
收藏
页码:215 / 224
页数:9
相关论文
共 50 条
  • [1] Applications of Clifford's Geometric Algebra
    Hitzer, Eckhard
    Nitta, Tohru
    Kuroe, Yasuaki
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (02) : 377 - 404
  • [2] Einstein’s equations and Clifford algebra
    Patrick R. Girard
    Advances in Applied Clifford Algebras, 1999, 9 (2) : 225 - 230
  • [3] Applications of Clifford’s Geometric Algebra
    Eckhard Hitzer
    Tohru Nitta
    Yasuaki Kuroe
    Advances in Applied Clifford Algebras, 2013, 23 : 377 - 404
  • [4] Clifford Algebra
    Wang Rui
    Zhi Derui
    2009 SECOND INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY AND TRAINING, 2009, : 235 - +
  • [5] Clifford Algebra Applied to Grover's Algorithm
    Alves, Rafael
    Lavor, Carlile
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (3-4) : 477 - 488
  • [6] Quaternions, Clifford's algebra and relativistic physicsativiste
    Frick, Holger
    ELEMENTE DER MATHEMATIK, 2008, 63 (03) : 150 - 151
  • [7] New Applications of Clifford's Geometric Algebra
    Breuils, Stephane
    Tachibana, Kanta
    Hitzer, Eckhard
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (02)
  • [8] Clifford Algebra Applied to Grover’s Algorithm
    Rafael Alves
    Carlile Lavor
    Advances in Applied Clifford Algebras, 2010, 20 : 477 - 488
  • [9] New Applications of Clifford’s Geometric Algebra
    Stephane Breuils
    Kanta Tachibana
    Eckhard Hitzer
    Advances in Applied Clifford Algebras, 2022, 32
  • [10] Clifford algebra structure and Einstein's equations
    Stedile, E
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (10) : 2117 - 2120