Strong LP formulations for scheduling splittable jobs on unrelated machines

被引:0
|
作者
José Correa
Alberto Marchetti-Spaccamela
Jannik Matuschke
Leen Stougie
Ola Svensson
Víctor Verdugo
José Verschae
机构
[1] Universidad de Chile,Departamento de Ingeniería Industrial
[2] Sapienza University of Rome,Department of Computer and System Sciences
[3] TU Berlin,Institut für Mathematik
[4] VU Amsterdam & CWI,Department of Econometrics and Operations Research
[5] EPFL,School of Computer and Communication Sciences
[6] Pontificia Universidad Católica de Chile,Departamento de Matemáticas
[7] Pontificia Universidad Católica de Chile,Departamento de Ingeniería Industrial y de Sistemas
来源
Mathematical Programming | 2015年 / 154卷
关键词
Primary 90B35; 68W25; Secondary 68Q25; 90C10;
D O I
暂无
中图分类号
学科分类号
摘要
A natural extension of the makespan minimization problem on unrelated machines is to allow jobs to be partially processed by different machines while incurring an arbitrary setup time. In this paper we present increasingly stronger LP-relaxations for this problem and their implications on the approximability of the problem. First we show that the straightforward LP, extending the approach for the original problem, has an integrality gap of 3 and yields an approximation algorithm of the same factor. By applying a lift-and-project procedure, we are able to improve both the integrality gap and the implied approximation factor to 1+ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\phi $$\end{document}, where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is the golden ratio. Since this bound remains tight for the seemingly stronger machine configuration LP, we propose a new job configuration LP that is based on an infinite continuum of fractional assignments of each job to the machines. We prove that this LP has a finite representation and can be solved in polynomial time up to any accuracy. Interestingly, we show that our problem cannot be approximated within a factor better than ee-1≈1.582(unlessP=NP)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{e}{e-1}\approx 1.582\, (\hbox {unless } \mathcal {P}=\mathcal {NP})$$\end{document}, which is larger than the inapproximability bound of 1.5 for the original problem.
引用
收藏
页码:305 / 328
页数:23
相关论文
共 50 条
  • [1] Strong LP formulations for scheduling splittable jobs on unrelated machines
    Correa, Jose
    Marchetti-Spaccamela, Alberto
    Matuschke, Jannik
    Stougie, Leen
    Svensson, Ola
    Verdugo, Victor
    Verschae, Jose
    [J]. MATHEMATICAL PROGRAMMING, 2015, 154 (1-2) : 305 - 328
  • [2] Scheduling unrelated machines with two types of jobs
    Vakhania, Nodari
    Alberto Hernandez, Jose
    Werner, Frank
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2014, 52 (13) : 3793 - 3801
  • [3] On the configuration-LP for scheduling on unrelated machines
    José Verschae
    Andreas Wiese
    [J]. Journal of Scheduling, 2014, 17 : 371 - 383
  • [4] On the configuration-LP for scheduling on unrelated machines
    Verschae, Jose
    Wiese, Andreas
    [J]. JOURNAL OF SCHEDULING, 2014, 17 (04) : 371 - 383
  • [5] On the Configuration-LP for Scheduling on Unrelated Machines
    Verschae, Jose
    Wiese, Andreas
    [J]. ALGORITHMS - ESA 2011, 2011, 6942 : 530 - 542
  • [6] Scheduling unrelated parallel machines with optional machines and jobs selection
    Fanjul-Peyro, Luis
    Ruiz, Ruben
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (07) : 1745 - 1753
  • [7] Scheduling deteriorating jobs with a learning effect on unrelated parallel machines
    Wang, Xiao-Yuan
    Wang, Jian-Jun
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5231 - 5238
  • [8] Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines
    Zhang, Guang-Qian
    Wang, Jian-Jun
    Liu, Ya-Jing
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [9] An enhanced formulation and simple heuristic for scheduling jobs on unrelated parallel machines
    Chiang, Chih-Ping
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2005, 26 (01): : 193 - 204
  • [10] A variable neighborhood search approach for planning and scheduling of jobs on unrelated parallel machines
    Bilyk, Andrew
    Moench, Lars
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2012, 23 (05) : 1621 - 1635