Smart Simon Bot with Public Sentiment Analysis for Novel Covid-19 Tweets Stratification

被引:3
|
作者
Ramya B.N. [1 ]
Shetty S.M. [1 ]
Amaresh A.M. [1 ]
Rakshitha R. [2 ]
机构
[1] Department of Computer Science and Engineering, GSSSIETW, Mysore
[2] Department of Computer Science and Engineering, VVIET, Mysore
关键词
COVID-19; Sentiment analysis; Tweet;
D O I
10.1007/s42979-021-00625-5
中图分类号
学科分类号
摘要
In present modern era, the outbreak of COVID-19 pandemic has created informational crisis. The public sentiments collected from different reflexions (hashtags, comments, tweets, posts of twitter) are measured accordingly, ensuring different policy decisions and messaging are incorporated. The implementation demonstrates intuition in to the advancement of fear sentiment eventually as COVID-19 approaches maximum levels in the world, by making use of detailed textual analysis with the help of required text data visualization. In addition, technical outline of machine learning stratification approaches are provided in the frame of text analytics, and comparing their efficiency in stratifying coronavirus tweets of different lengths. Using Naïve Bayes method, 91% accuracy is achieved for short tweets and using logistic regression classification method, 74% accuracy is achieved for short tweets. © 2021, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 50 条
  • [1] COVID-19 Sentiment Analysis Based on Tweets
    La Gatta, Valerio
    Moscato, Vincenzo
    Postiglione, Marco
    Sperli, Giancarlo
    IEEE INTELLIGENT SYSTEMS, 2023, 38 (03) : 51 - 55
  • [2] Sentiment Analysis of Pandemic Tweets with COVID-19 as a Prototype
    Almutiri, Mashail
    Alghamdi, Mona
    Elazhary, Hanan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (04) : 510 - 518
  • [3] Topic based Sentiment Analysis for COVID-19 Tweets
    Abdulaziz, Manal
    Alsolamy, Mashail
    Alotaibi, Alanoud
    Alabbas, Abeer
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (01) : 626 - 636
  • [4] COVID-19 Public Sentiment Insights and Machine Learning for Tweets Classification
    Samuel, Jim
    Ali, G. G. Md Nawaz
    Rahman, Md Mokhlesur
    Esawi, Ek
    Samuel, Yana
    INFORMATION, 2020, 11 (06)
  • [5] Sentiment Analysis of Tweets on Online Education during COVID-19
    Yildirim, Elif
    Yazgan, Harun
    Ozbek, Onur
    Gunay, Ahmet Can
    Kocacinar, Busra
    Sengel, Oznur
    Akbulut, Fatma Patlar
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT I, 2023, 675 : 240 - 251
  • [6] Sentiment analysis on Hindi tweets during COVID-19 pandemic
    Saroj, Anita
    Thakur, Akash
    Pal, Sukomal
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (01)
  • [7] Sentiment analysis and topic modeling of COVID-19 tweets of India
    Bhardwaj, Manju
    Mishra, Priya
    Badhani, Shikha
    Muttoo, Sunil K. K.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (05) : 1756 - 1776
  • [8] Sentiment analysis tracking of COVID-19 vaccine through tweets
    Akila Sarirete
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 14661 - 14669
  • [9] Sentiment analysis of Indian Tweets about Covid-19 vaccines
    Mir, Aasif Ahmad
    Sevukan, Rathinam
    JOURNAL OF INFORMATION SCIENCE, 2022, 50 (05) : 1308 - 1320
  • [10] Sentiment analysis tracking of COVID-19 vaccine through tweets
    Sarirete, Akila
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (11) : 14661 - 14669