High-throughput, quantitative analyses of genetic interactions in E. coli

被引:0
|
作者
Typas A. [1 ]
Nichols R.J. [1 ]
Siegele D.A. [2 ]
Shales M. [3 ]
Collins S.R. [3 ,4 ]
Lim B. [1 ]
Braberg H. [3 ]
Yamamoto N. [5 ]
Takeuchi R. [5 ]
Wanner B.L. [6 ]
Mori H. [5 ]
Weissman J.S. [3 ,4 ]
Krogan N.J. [3 ]
Gross C.A. [1 ]
机构
[1] Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94158
[2] Department of Biology, Texas A and M University, College Station, TX 77843
[3] Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, University of California at San Francisco, San Francisco, CA 94158
[4] Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158
[5] Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101
[6] Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nmeth.1240
中图分类号
学科分类号
摘要
Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli.
引用
收藏
页码:781 / 787
页数:6
相关论文
共 50 条
  • [1] High-throughput, quantitative analyses of genetic interactions in E. coli
    Typas, Athanasios
    Nichols, Robert J.
    Siegele, Deborah A.
    Shales, Michael
    Collins, Sean R.
    Lim, Bentley
    Braberg, Hannes
    Yamamoto, Natsuko
    Takeuchi, Rikiya
    Wanner, Barry L.
    Mori, Hirotada
    Weissman, Jonathan S.
    Krogan, Nevan J.
    Gross, Carol A.
    NATURE METHODS, 2008, 5 (09) : 781 - 787
  • [2] High-throughput mapping of the phage resistance landscape in E. coli
    Mutalik, Vivek K.
    Adler, Benjamin A.
    Rishi, Harneet S.
    Piya, Denish
    Zhong, Crystal
    Koskella, Britt
    Kutter, Elizabeth M.
    Calendar, Richard
    Novichkov, Pavel S.
    Price, Morgan N.
    Deutschbauer, Adam M.
    Arkin, Adam P.
    PLOS BIOLOGY, 2020, 18 (10)
  • [3] Discovering novel E. coli gene functions with high-throughput metabolomics
    Sauer, U.
    FEBS JOURNAL, 2012, 279 : 37 - 37
  • [4] Homologous high-throughput expression and purification of highly conserved E. coli proteins
    Ergin, A.
    Buessow, K.
    Sieper, J.
    Thiel, A.
    Duchmann, R.
    Adam, T.
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2007, 297 : 49 - 50
  • [5] Multiple high-throughput analyses monitor the response of E-coli to perturbations
    Ishii, Nobuyoshi
    Nakahigashi, Kenji
    Baba, Tomoya
    Robert, Martin
    Soga, Tomoyoshi
    Kanai, Akio
    Hirasawa, Takashi
    Naba, Miki
    Hirai, Kenta
    Hoque, Aminul
    Ho, Pei Yee
    Kakazu, Yuji
    Sugawara, Kaori
    Igarashi, Saori
    Harada, Satoshi
    Masuda, Takeshi
    Sugiyama, Naoyuki
    Togashi, Takashi
    Hasegawa, Miki
    Takai, Yuki
    Yugi, Katsuyuki
    Arakawa, Kazuharu
    Iwata, Nayuta
    Toya, Yoshihiro
    Nakayama, Yoichi
    Nishioka, Takaaki
    Shimizu, Kazuyuki
    Mori, Hirotada
    Tomita, Masaru
    SCIENCE, 2007, 316 (5824) : 593 - 597
  • [6] High-throughput phenotyping of uropathogenic E. coli isolates with Fourier transform infrared spectroscopy
    AlRabiah, Haitham
    Correa, Elon
    Upton, Mathew
    Goodacre, Royston
    ANALYST, 2013, 138 (05) : 1363 - 1369
  • [7] Quantitative high-throughput analysis of synthetic genetic interactions in Caenorhabditis elegans by RNA interference
    Fortunato, Angelo
    GENOMICS, 2009, 93 (04) : 392 - 396
  • [8] Fine-Tuning of Chemotactic Response in E. coli Determined by High-Throughput Capillary Assay
    Park, Heungwon
    Guet, Calin C.
    Emonet, Thierry
    Cluzel, Philippe
    CURRENT MICROBIOLOGY, 2011, 62 (03) : 764 - 769
  • [9] Fine-Tuning of Chemotactic Response in E. coli Determined by High-Throughput Capillary Assay
    Heungwon Park
    Calin C. Guet
    Thierry Emonet
    Philippe Cluzel
    Current Microbiology, 2011, 62 : 764 - 769
  • [10] A High-Throughput Strategy for Dissecting Mammalian Genetic Interactions
    Stockman, Victoria B.
    Ghamsari, Lila
    Lasso, Gorka
    Honig, Barry
    Shapira, Sagi D.
    Wang, Harris H.
    PLOS ONE, 2016, 11 (12):