On the concept of B-statistical uniform integrability of weighted sums of random variables and the law of large numbers with mean convergence in the statistical sense
被引:0
|
作者:
Manuel Ordóñez Cabrera
论文数: 0引用数: 0
h-index: 0
机构:University of Sevilla,Department of Mathematical Analysis
Manuel Ordóñez Cabrera
Andrew Rosalsky
论文数: 0引用数: 0
h-index: 0
机构:University of Sevilla,Department of Mathematical Analysis
Andrew Rosalsky
Mehmet Ünver
论文数: 0引用数: 0
h-index: 0
机构:University of Sevilla,Department of Mathematical Analysis
Mehmet Ünver
Andrei Volodin
论文数: 0引用数: 0
h-index: 0
机构:University of Sevilla,Department of Mathematical Analysis
Andrei Volodin
机构:
[1] University of Sevilla,Department of Mathematical Analysis
[2] University of Florida,Department of Statistics
[3] Ankara University,Department of Mathematics, Faculty of Science
[4] University of Regina,Department of Mathematics and Statistics
Sequence of random variables;
Uniform integrability;
Statistical convergence;
40A35;
60F25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this correspondence, for a nonnegative regular summability matrix B and an array ank\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ a_{nk}\right\} $$\end{document} of real numbers, the concept of B-statistical uniform integrability of a sequence of random variables Xk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ X_{k}\right\} $$\end{document} with respect to ank\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ a_{nk}\right\} $$\end{document} is introduced. This concept is more general and weaker than the concept of Xk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ X_{k}\right\} $$\end{document} being uniformly integrable with respect to ank\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ a_{nk}\right\} $$\end{document}. Two characterizations of B-statistical uniform integrability with respect to ank\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ a_{nk}\right\} $$\end{document} are established, one of which is a de La Vallée Poussin-type characterization. For a sequence of pairwise independent random variables Xk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ X_{k}\right\} $$\end{document} which is B-statistically uniformly integrable with respect to ank\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ a_{nk}\right\} $$\end{document}, a law of large numbers with mean convergence in the statistical sense is presented for ∑k=1∞ank(Xk-EXk)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum \nolimits _{k=1}^{\infty }a_{nk}(X_{k}-\mathbb {E}X_{k})$$\end{document} as n→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\rightarrow \infty $$\end{document}. A version is obtained without the pairwise independence assumption by strengthening other conditions.
机构:
Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Giuliano Antonini, R.
Unver, M.
论文数: 0引用数: 0
h-index: 0
机构:
Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, TurkeyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Unver, M.
Volodin, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, CanadaUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
机构:
Common Required Course Department, Hengyang Financial and Industry Polytechnic, HengyangCommon Required Course Department, Hengyang Financial and Industry Polytechnic, Hengyang