Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study

被引:0
|
作者
Prakash Adekkanattu
Luke V. Rasmussen
Jennifer A. Pacheco
Joseph Kabariti
Daniel J. Stone
Yue Yu
Guoqian Jiang
Yuan Luo
Pascal S. Brandt
Zhenxing Xu
Veer Vekaria
Jie Xu
Fei Wang
Natalie C. Benda
Yifan Peng
Parag Goyal
Faraz S. Ahmad
Jyotishman Pathak
机构
[1] Weill Cornell Medicine,
[2] Northwestern University,undefined
[3] The Mayo Clinic,undefined
[4] University of Washington,undefined
[5] University of Florida,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Left ventricular ejection fraction (EF) is a key measure in the diagnosis and treatment of heart failure (HF) and many patients experience changes in EF overtime. Large-scale analysis of longitudinal changes in EF using electronic health records (EHRs) is limited. In a multi-site retrospective study using EHR data from three academic medical centers, we investigated longitudinal changes in EF measurements in patients diagnosed with HF. We observed significant variations in baseline characteristics and longitudinal EF change behavior of the HF cohorts from a previous study that is based on HF registry data. Data gathered from this longitudinal study were used to develop multiple machine learning models to predict changes in ejection fraction measurements in HF patients. Across all three sites, we observed higher performance in predicting EF increase over a 1-year duration, with similarly higher performance predicting an EF increase of 30% from baseline compared to lower percentage increases. In predicting EF decrease we found moderate to high performance with low confidence for various models. Among various machine learning models, XGBoost was the best performing model for predicting EF changes. Across the three sites, the XGBoost model had an F1-score of 87.2, 89.9, and 88.6 and AUC of 0.83, 0.87, and 0.90 in predicting a 30% increase in EF, and had an F1-score of 95.0, 90.6, 90.1 and AUC of 0.54, 0.56, 0.68 in predicting a 30% decrease in EF. Among features that contribute to predicting EF changes, baseline ejection fraction measurement, age, gender, and heart diseases were found to be statistically significant.
引用
收藏
相关论文
共 50 条
  • [1] Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study
    Adekkanattu, Prakash
    Rasmussen, Luke V.
    Pacheco, Jennifer A.
    Kabariti, Joseph
    Stone, Daniel J.
    Yu, Yue
    Jiang, Guoqian
    Luo, Yuan
    Brandt, Pascal S.
    Xu, Zhenxing
    Vekaria, Veer
    Xu, Jie
    Wang, Fei
    Benda, Natalie C.
    Peng, Yifan
    Goyal, Parag
    Ahmad, Faraz S.
    Pathak, Jyotishman
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Prediction of heart failure patients with distinct left ventricular ejection fraction levels using circadian ECG features and machine learning
    Al Younis, Sona M.
    Hadjileontiadis, Leontios J.
    Khandoker, Ahsan H.
    Stefanini, Cesare
    Soulaidopoulos, Stergios
    Arsenos, Petros
    Doundoulakis, Ioannis
    Gatzoulis, Konstantinos A.
    Tsioufis, Konstantinos
    [J]. PLOS ONE, 2024, 19 (05):
  • [3] Prognostic impacts of changes in left ventricular ejection fraction in heart failure patients with preserved left ventricular ejection fraction
    Yoshihisa, Akiomi
    Sato, Yu
    Kanno, Yuki
    Takiguchi, Mai
    Yokokawa, Tetsuro
    Abe, Satoshi
    Misaka, Tomofumi
    Sato, Takamasa
    Oikawa, Masayoshi
    Kobayashi, Atsushi
    Yamaki, Takayoshi
    Kunii, Hiroyuki
    Takeishi, Yasuchika
    [J]. OPEN HEART, 2020, 7 (01):
  • [4] Long-Term Trajectories of Left Ventricular Ejection Fraction in Patients With Chronic Inflammatory Diseases and Heart Failure An Analysis of Electronic Health Records
    Rivera, Adovich S.
    Sinha, Arjun
    Ahmad, Faraz S.
    Thorp, Edward
    Wilcox, Jane E.
    Lloyd-Jones, Donald M.
    Feinstein, Matthew J.
    [J]. CIRCULATION-HEART FAILURE, 2021, 14 (08)
  • [5] Value of Left Ventricular Ejection Fraction and Its Changes for the Prediction of Symptomatic Heart Failure in Patients Treated by Anthracyclines
    Wang, Lin
    Tan, Timothy
    Szymonifka, Jackie
    Picard, Michael H.
    Scherrer-Crosbie, Marielle
    [J]. CIRCULATION, 2013, 128 (22)
  • [6] Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure With Preserved Ejection Fraction
    Sanchez-Martinez, Sergio
    Duchateau, Nicolas
    Erdei, Tamas
    Kunszt, Gabor
    Aakhus, Svend
    Degiovanni, Anna
    Marino, Paolo
    Carluccio, Erberto
    Piella, Gemma
    Fraser, Alan G.
    Bijnens, Bart H.
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (04)
  • [7] Machine Learning Prediction of Left Ventricular Chamber Size and Ejection Fraction
    Ouyang, David
    Ghorbani, Amirata
    Chen, Jonathan H.
    Harrington, Robert A.
    Zou, James
    Ashley, Euan A.
    Liang, David
    [J]. CIRCULATION, 2019, 140
  • [8] Impact of temporal changes in left ventricular ejection fraction in patients at risk for heart failure
    Aoyanagi, H.
    Sakata, Y.
    Nochioka, K.
    Shiroto, T.
    Oikawa, T.
    Abe, R.
    Kasahara, S.
    Sato, M.
    Takahashi, J.
    Miyata, S.
    Shimokawa, H.
    [J]. EUROPEAN HEART JOURNAL, 2018, 39 : 376 - 376
  • [9] Multi-modality machine learning approach for risk stratification in heart failure with left ventricular ejection fraction ≤ 45%
    Tse, Gary
    Zhou, Jiandong
    Woo, Samuel Won Dong
    Ko, Ching Ho
    Lai, Rachel Wing Chuen
    Liu, Tong
    Liu, Yingzhi
    Leung, Keith Sai Kit
    Li, Andrew
    Lee, Sharen
    Li, Ka Hou Christien
    Lakhani, Ishan
    Zhang, Qingpeng
    [J]. ESC HEART FAILURE, 2020, 7 (06): : 3716 - 3725
  • [10] Machine learning for prediction of sudden cardiac death in heart failure patients with low left ventricular ejection fraction: study protocol for a retroprospective multicentre registry in China
    Meng, Fanqi
    Zhang, Zhihua
    Hou, Xiaofeng
    Qian, Zhiyong
    Wang, Yao
    Chen, Yanhong
    Wang, Yilian
    Zhou, Ye
    Chen, Zhen
    Zhang, Xiwen
    Yang, Jing
    Zhang, Jinlong
    Guo, Jianghong
    Li, Kebei
    Chen, Lu
    Zhuang, Ruijuan
    Jiang, Hai
    Zhou, Weihua
    Tang, Shaowen
    Wei, Yongyue
    Zou, Jiangang
    [J]. BMJ OPEN, 2019, 9 (05):