Existence of ground state solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces

被引:0
|
作者
Liben Wang
Xingyong Zhang
Hui Fang
机构
[1] Kunming University of Science and Technology,Faculty of Civil Engineering and Mechanics
[2] Kunming University of Science and Technology,Department of Mathematics, Faculty of Science
来源
关键词
Orlicz-Sobolev spaces; quasilinear; critical point; ground state; 35J20; 35J50; 35J55; 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the following nonlinear and non-homogeneous elliptic system: {−div(a1(|∇u|)∇u)+V1(x)a1(|u|)u=Fu(x,u,v)in RN,−div(a2(|∇v|)∇v)+V2(x)a2(|v|)v=Fv(x,u,v)in RN,(u,v)∈W1,Φ1(RN)×W1,Φ2(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} {-}\operatorname{div}(a_{1}( \vert \nabla{u} \vert )\nabla{u})+V_{1}(x)a_{1}( \vert u \vert )u=F_{u}(x,u,v)\quad \mbox{in } \mathbb{R}^{N},\\ {-}\operatorname{div}(a_{2}( \vert \nabla{v} \vert )\nabla{v})+V_{2}(x)a_{2}( \vert v \vert )v=F_{v}(x,u,v) \quad\mbox{in } \mathbb{R}^{N},\\ (u, v)\in W^{1,\Phi_{1}}(\mathbb{R}^{N})\times W^{1, \Phi_{2}}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ \end{document} where ϕi(t)=ai(|t|)t(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi_{i}(t)=a_{i}( \vert t \vert )t (i=1,2)$\end{document} are two increasing homeomorphisms from R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}$\end{document} onto R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}$\end{document}, functions Vi(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V_{i}(i=1,2)$\end{document} and F are 1-periodic in x, and F satisfies some (ϕ1,ϕ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\phi_{1},\phi_{2})$\end{document}-superlinear Orlicz-Sobolev conditions. By using a variant mountain pass lemma, we obtain that the system has a ground state.
引用
收藏
相关论文
共 50 条
  • [1] Existence of ground state solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    BOUNDARY VALUE PROBLEMS, 2017,
  • [2] Existence and multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3792 - 3814
  • [3] Multiplicity of Solutions for a Class of Quasilinear Elliptic Systems in Orlicz-Sobolev Spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 881 - 912
  • [4] Three solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Allegue, Olfa
    Bezzarga, Mounir
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (09) : 1215 - 1227
  • [5] Multiple solutions for a class of nonlocal quasilinear elliptic systems in Orlicz-Sobolev spaces
    Heidari, S.
    Razani, A.
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [6] Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces
    Ait-Mahiout, Karima
    Alves, Claudianor O.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (06) : 767 - 785
  • [7] A note on the existence of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Yang Yang
    Jihui Zhang
    Boundary Value Problems, 2012
  • [8] Existence and multiplicity of solutions for a class of quasilinear elliptic equations: An Orlicz-Sobolev space setting
    Fang, Fei
    Tan, Zhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 420 - 428
  • [9] A note on the existence of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Yang, Yang
    Zhang, Jihui
    BOUNDARY VALUE PROBLEMS, 2012, : 1 - 7
  • [10] On quasilinear elliptic systems with growth conditions in Orlicz-Sobolev spaces
    Balaadich, Farah
    Azroul, Elhoussine
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 994 - 1005