Ruminations on matrix convexity and the strong subadditivity of quantum entropy

被引:2
|
作者
Aizenman, Michael [1 ,2 ]
Cipolloni, Giorgio [3 ]
机构
[1] Princeton Univ, Dept Phys & Math, Princeton, NJ 08544 USA
[2] Weizmann Inst Sci, Rehovot, Israel
[3] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
关键词
Matrix convexity; Quantum entropy; Strong subadditivity; Parallel sums;
D O I
10.1007/s11005-023-01638-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The familiar second derivative test for convexity, combined with resolvent calculus, is shown to yield a useful tool for the study of convex matrix-valued functions. We demonstrate the applicability of this approach on a number of theorems in this field. These include convexity principles which play an essential role in the Lieb-Ruskai proof of the strong subadditivity of quantum entropy.
引用
收藏
页数:15
相关论文
共 50 条