LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa

被引:2
|
作者
Rodda, Suraj Reddy [1 ,2 ]
Fararoda, Rakesh [1 ]
Gopalakrishnan, Rajashekar [1 ]
Jha, Nidhi [3 ]
Rejou-Mechain, Maxime [4 ]
Couteron, Pierre [4 ]
Barbier, Nicolas [4 ]
Alfonso, Alonso [5 ]
Bako, Ousmane [6 ]
Bassama, Patrick [6 ]
Behera, Debabrata [7 ]
Bissiengou, Pulcherie [8 ]
Biyiha, Herve [6 ]
Brockelman, Warren Y. [9 ]
Chanthorn, Wirong [10 ]
Chauhan, Prakash [1 ]
Dadhwal, Vinay Kumar [11 ]
Dauby, Gilles [4 ,12 ,13 ]
Deblauwe, Vincent [14 ,15 ]
Dongmo, Narcis [6 ]
Droissart, Vincent [4 ,12 ]
Jeyakumar, Selvaraj [7 ]
Jha, Chandra Shekar [1 ]
Kandem, Narcisse G. [12 ]
Katembo, John [16 ]
Kougue, Ronald [6 ]
Leblanc, Hugo [4 ]
Lewis, Simon [17 ,18 ]
Libalah, Moses [12 ]
Manikandan, Maya [1 ]
Martin-Ducup, Olivier [19 ]
Mbock, Germain [6 ]
Memiaghe, Herve [8 ]
Mofack, Gislain [12 ]
Mutyala, Praveen [1 ]
Narayanan, Ayyappan [7 ]
Nathalang, Anuttara [9 ]
Ndjock, Gilbert Oum [20 ]
Ngoula, Fernandez [12 ]
Nidamanuri, Rama Rao [2 ]
Pelissier, Raphael [4 ]
Saatchi, Sassan [21 ]
Sagang, Le Bienfaiteur [12 ,15 ]
Salla, Patrick [12 ]
Simo-Droissart, Murielle [12 ]
Smith, Thomas B. [15 ]
Sonke, Bonaventure [12 ,13 ]
Stevart, Tariq [22 ]
Tjomb, Daniele [6 ]
Zebaze, Donatien [12 ]
机构
[1] ISRO, Forestry & Ecol Grp, Natl Remote Sensing Ctr, Hyderabad 500037, India
[2] Indian Inst Space Sci & Technol IIST, Thiruvananthapuram, Kerala, India
[3] Oregon State Univ, Coll Forestry, Corvallis, OR 97331 USA
[4] Univ Montpellier, CNRS, IRD, INRAE,CIRAD,AMAP, Montpellier, France
[5] Smithsonian Natl Zoo & Conservat Biol Inst, Ctr Conservat & Sustainabil, Washington, DC USA
[6] Minist Forets & Faune, Ecole Natl Eaux & Forets Mbalmayo, Mbalmayo, Cameroon
[7] French Inst Pondicherry, Dept Ecol, Pondicherry 605001, India
[8] CENAREST, Inst pharmacopee & med tradit Herbier Natl Gabon, Libreville, Gabon
[9] Natl Sci & Technol Dev Agcy, Natl Biobank Thailand NBT, Klongluang, Pathum Thani, Thailand
[10] Kasetsart Univ, Fac Environm, Dept Environm Technol & Management, Bangkok 10900, Thailand
[11] Natl Inst Adv Studies NIAS, Bangalore, India
[12] Univ Yaounde I, Higher Teachers Training Coll, Plant Systemat & Ecol Lab, POB 047, Yaounde, Cameroon
[13] IRGM, Int Joint Lab DYCOFAC, IRD, UYI, POB 1857, Yaounde, Cameroon
[14] Int Inst Trop Agr IITA, BP 2008 Messa, Yaounde, Cameroon
[15] Univ Calif Los Angeles, Inst Environm & Sustainabil, Ctr Trop Res, Los Angeles, CA USA
[16] Inst Super Etud Agron Bengamisa, Kisangani, DEM REP CONGO
[17] Univ Coll London UCL, Dept Geog, London, England
[18] Univ Leeds, Sch Geog, Leeds, England
[19] URFM, INRAE, Ecol Forets Mediterraneennes, F-84914 Avignon, France
[20] Minist Forestry & Wildlife, Dja Wildlife Reserve, Yaounde, Cameroon
[21] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[22] Missouri Bot Garden, Africa & Madagascar Program, 4344 Shaw Blvd, St Louis, MO 63110 USA
关键词
MODELS;
D O I
10.1038/s41597-024-03162-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate mapping and monitoring of tropical forests aboveground biomass (AGB) is crucial to design effective carbon emission reduction strategies and improving our understanding of Earth's carbon cycle. However, existing large-scale maps of tropical forest AGB generated through combinations of Earth Observation (EO) and forest inventory data show markedly divergent estimates, even after accounting for reported uncertainties. To address this, a network of high-quality reference data is needed to calibrate and validate mapping algorithms. This study aims to generate reference AGB datasets using field inventory plots and airborne LiDAR data for eight sites in Central Africa and five sites in South Asia, two regions largely underrepresented in global reference AGB datasets. The study provides access to these reference AGB maps, including uncertainty maps, at 100 m and 40 m spatial resolutions covering a total LiDAR footprint of 1,11,650 ha [ranging from 150 to 40,000 ha at site level]. These maps serve as calibration/validation datasets to improve the accuracy and reliability of AGB mapping for current and upcoming EO missions (viz., GEDI, BIOMASS, and NISAR).
引用
收藏
页数:15
相关论文
共 39 条
  • [1] Assessing the influence of return density on estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia
    Manuri, Solichin
    Andersen, Hans-Erik
    McGaughey, Robert J.
    Brack, Cris
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 56 : 24 - 35
  • [2] Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity
    Shao, Gang
    Shao, Guofan
    Gallion, Joey
    Saunders, Michael R.
    Frankenberger, Jane R.
    Fei, Songlin
    [J]. REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 872 - 882
  • [3] Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data
    J. Luis Hernández-Stefanoni
    Miguel Ángel Castillo-Santiago
    Jean Francois Mas
    Charlotte E. Wheeler
    Juan Andres-Mauricio
    Fernando Tun-Dzul
    Stephanie P. George-Chacón
    Gabriela Reyes-Palomeque
    Blanca Castellanos-Basto
    Raúl Vaca
    Juan Manuel Dupuy
    [J]. Carbon Balance and Management, 15
  • [4] Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data
    Luis Hernandez-Stefanoni, J.
    Angel Castillo-Santiago, Miguel
    Francois Mas, Jean
    Wheeler, Charlotte E.
    Andres-Mauricio, Juan
    Tun-Dzul, Fernando
    George-Chacon, Stephanie P.
    Reyes-Palomeque, Gabriela
    Castellanos-Basto, Blanca
    Vaca, Raul
    Manuel Dupuy, Juan
    [J]. CARBON BALANCE AND MANAGEMENT, 2020, 15 (01)
  • [5] BIOMASS OF TROPICAL FORESTS OF SOUTH AND SOUTHEAST-ASIA
    BROWN, S
    GILLESPIE, AJR
    LUGO, AE
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1991, 21 (01): : 111 - 117
  • [6] Lidar-Based Aboveground Biomass Estimations for the Maya Archaeological Site of Yaxnohcah, Campeche, Mexico
    Vazquez-Alonso, Mariana
    Lentz, David L.
    Dunning, Nicholas P.
    Carr, Christopher
    Anaya Hernandez, Armando
    Reese-Taylor, Kathryn
    [J]. REMOTE SENSING, 2022, 14 (14)
  • [7] Comparison of Aboveground Biomass Estimation From InSAR and LiDAR Canopy Height Models in Tropical Forests
    Schlund, Michael
    Erasmi, Stefan
    Scipal, Klaus
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 367 - 371
  • [8] Estimating aboveground biomass of tropical urban forests with UAV-borne hyperspectral and LiDAR data
    Ferreira, Matheus Pinheiro
    Martins, Gabriela Barbosa
    de Almeida, Thais Moreira Hidalgo
    Ribeiro, Rafael da Silva
    da Veiga Jr, Valdir Florencio
    Paz, Igor da Silva Rocha
    de Siqueira, Marinez Ferreira
    Kurtz, Bruno Coutinho
    [J]. URBAN FORESTRY & URBAN GREENING, 2024, 96
  • [9] Comparative evaluation of different approaches to estimate aboveground biomass and biomass density of tropical forests in Southeast Asia: A review
    Magcale-Macandog, DB
    [J]. PHILIPPINE AGRICULTURAL SCIENTIST, 2004, 87 (01): : 61 - 75
  • [10] IMPACTS OF TREE HEIGHT-DBH ALLOMETRY ON LIDAR-BASED TREE ABOVEGROUND BIOMASS MODELING
    Fang, R.
    [J]. XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 625 - 628