Algebraic Quantum Field Theory, Perturbation Theory, and the Loop Expansion

被引:0
|
作者
M. Dütsch
K. Fredenhagen
机构
[1] II. Institut für Theoretische Physik,
[2] Universität Hamburg,undefined
[3] Luruper Chaussee 149,undefined
[4] Hamburg,undefined
[5] Germany.¶E-mail: duetsch@mail.desy.de,undefined
[6] fredenha@x4u2.desy.de,undefined
来源
关键词
Field Theory; Quantum Field Theory; Perturbation Theory; Minkowski Space; Action Principle;
D O I
暂无
中图分类号
学科分类号
摘要
The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system ?(n) of observables “up to n loops”, where ?(0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions.
引用
收藏
页码:5 / 30
页数:25
相关论文
共 50 条
  • [1] Algebraic quantum field theory, perturbation theory, and the loop expansion
    Dütsch, M
    Fredenhagen, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (01) : 5 - 30
  • [2] Algebraic and differential structures in renormalized perturbation quantum field theory
    Rosenbaum, M
    NON-ASSOCIATIVE ALGEBRA AND ITS APPLICATIONS, 2006, 246 : 365 - 381
  • [3] Algebraic approach to the 1/N expansion in quantum field theory
    Hollands, S
    REVIEWS IN MATHEMATICAL PHYSICS, 2004, 16 (04) : 509 - 558
  • [4] An algebraic formula for two loop renormalization of scalar quantum field theory
    Elizabeth E. Jenkins
    Aneesh V. Manohar
    Luca Naterop
    Julie Pagès
    Journal of High Energy Physics, 2023
  • [5] An algebraic formula for two loop renormalization of scalar quantum field theory
    Jenkins, Elizabeth E.
    Manohar, Aneesh V.
    Naterop, Luca
    Pages, Julie
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (12)
  • [6] Adaptive perturbation theory: quantum mechanics and field theory
    Weinstein, Marvin
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2006, 161 : 238 - 247
  • [7] Kato expansion in quantum canonical perturbation theory
    Nikolaev, Andrey
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (06)
  • [8] Quantum transition state theory: Perturbation expansion
    Shao, JS
    Liao, JL
    Pollak, E
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (23): : 9711 - 9725
  • [9] Operads for algebraic quantum field theory
    Benini, Marco
    Schenkel, Alexander
    Woike, Lukas
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (02)
  • [10] Algebraic Quantum Field Theory – an introduction
    Fewster, Christopher J.
    Rejzner, Kasia
    arXiv, 2019,