Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation

被引:0
|
作者
S. P. Graham
M. Rouainia
A. C. Aplin
P. Cubillas
T. D. Fender
P. J. Armitage
机构
[1] Newcastle University,School of Engineering
[2] Durham University,Department of Earth Sciences
[3] BP,Unconventional Gas Technology
来源
关键词
Calcareous mudstones; Soft rocks; Composite material; Small strain stiffness; Atomic force microscope; Nanoindentation; XRD; SEM;
D O I
暂无
中图分类号
学科分类号
摘要
The geomechanical integrity of shale overburden is a highly significant geological risk factor for a range of engineering and energy-related applications including CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} storage and unconventional hydrocarbon production. This paper aims to provide a comprehensive set of high-quality nano- and micro-mechanical data on shale samples to better constrain the macroscopic mechanical properties that result from the microstructural constituents of shale. We present the first study of the mechanical responses of a calcareous shale over length scales of 10 nm to 100 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}m, combining approaches involving atomic force microscopy (AFM), and both low-load and high-load nanoindentation. PeakForce quantitative nanomechanical mapping AFM (PF-QNM) and quantitative imaging (QI-AFM) give similar results for Young’s modulus up to 25 GPa, with both techniques generating values for organic matter of 5–10 GPa. Of the two AFM techniques, only PF-QNM generates robust results at higher moduli, giving similar results to low-load nanoindentation up to 60 GPa. Measured moduli for clay, calcite, and quartz-feldspar are 22±2GPa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22 \pm 2\,\hbox { GPa}$$\end{document}, 42±8GPa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$42 \pm 8\,\hbox { GPa}$$\end{document}, and 55±10GPa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$55 \pm 10\,\hbox { GPa}$$\end{document} respectively. For calcite and quartz-feldspar, these values are significantly lower than measurements made on highly crystalline phases. High-load nanoindentation generates an unimodal mechanical response in the range of 40–50 GPa for both samples studied here, consistent with calcite being the dominant mineral phase. Voigt and Reuss bounds calculated from low-load nanoindentation results for individual phases generate the expected composite value measured by high-load nanoindentation at length scales of 100–600 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}m. In contrast, moduli measured on more highly crystalline mineral phases using data from literature do not match the composite value. More emphasis should, therefore, be placed on the use of nano- and micro-scale data as the inputs to effective medium models and homogenisation schemes to predict the bulk shale mechanical response.
引用
收藏
页码:303 / 320
页数:17
相关论文
共 50 条
  • [1] Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation
    Graham, S. P.
    Rouainia, M.
    Aplin, A. C.
    Cubillas, P.
    Fender, T. D.
    Armitage, P. J.
    ROCK MECHANICS AND ROCK ENGINEERING, 2021, 54 (01) : 303 - 320
  • [2] AFM vs. Nanoindentation: Nanomechanical properties of organic-rich Shale
    Kong, Lingyun
    Hadavimoghaddam, Fahimeh
    Li, Chunxiao
    Liu, Kouqi
    Liu, Bo
    Semnani, Amir
    Ostadhassan, Mehdi
    MARINE AND PETROLEUM GEOLOGY, 2021, 132
  • [3] Effect of Diagenesis on Geomechanical Properties of Organic-Rich Calcareous Shale: A Multiscale Investigation
    Charlton, T. S.
    Goodarzi, M.
    Rouainia, M.
    Aplin, A. C.
    Cubillas, P.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (07)
  • [4] Permeability of Organic-Rich Shale
    Wasaki, Asana
    Akkutlu, I. Yucel
    SPE JOURNAL, 2015, 20 (06): : 1384 - 1396
  • [5] Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale
    Mathia, Eliza J.
    Bowen, Leon
    Thomas, K. Mark
    Aplin, Andrew C.
    MARINE AND PETROLEUM GEOLOGY, 2016, 75 : 117 - 139
  • [6] Influence of geochemistry on toughening behavior of organic-rich shale
    Akono, Ange-Therese
    Kabir, Pooyan
    ACTA GEOTECHNICA, 2019, 14 (04) : 1129 - 1142
  • [7] Influence of geochemistry on toughening behavior of organic-rich shale
    Ange-Therese Akono
    Pooyan Kabir
    Acta Geotechnica, 2019, 14 : 1129 - 1142
  • [8] Investigation of Intermingled Fractal Model for Organic-Rich Shale
    Li, Caoxiong
    Lin, Mian
    Ji, Lili
    Jiang, Wenbin
    Cao, Gaohui
    ENERGY & FUELS, 2017, 31 (09) : 8896 - 8909
  • [9] Gas injection evaluated for EOR in organic-rich shale
    Carpenter, Chris
    JPT, Journal of Petroleum Technology, 2019, 71 (07): : 72 - 73
  • [10] Apparent gas permeability in an organic-rich shale reservoir
    Song, Wenhui
    Yao, Jun
    Li, Yang
    Sun, Hai
    Zhang, Lei
    Yang, Yongfei
    Zhao, Jianlin
    Sui, Hongguang
    FUEL, 2016, 181 : 973 - 984