Multiphysics Finite Element Method for Quasi-Static Thermo-Poroelasticity

被引:0
|
作者
Yuxiang Chen
Zhihao Ge
机构
[1] Henan University,School of Mathematics and Statistics
[2] Henan University,School of Mathematics and Statistics, Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms
来源
关键词
Thermo-poroelasticity; Multiphysics finite element method; Optimal convergence order;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a multiphysics finite element method for the quasi-static thermo-poroelasticity model with small Péclet number. To reveal the multi-physical processes of deformation, diffusion and heat transfer, we reformulate the original model into a fluid coupled problem. Then, we prove the existence and uniqueness of a weak solution to the original problem and the reformulated problem. And we propose a fully discrete finite element method based on the multiphysics reformulation–Taylor-Hood element (P2-P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2-P_1$$\end{document} element pair) for the variables of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf {u}}$$\end{document} and ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1$$\end{document}-conforming element for the variable of η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} and P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1$$\end{document}-conforming element for the variable of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and the backward Euler method for time discretization. And we give the stability analysis of the above proposed method, also we prove that the fully discrete multiphysics finite element method has an optimal convergence order. Finally, we show some numerical examples to verify the theoretical results.
引用
收藏
相关论文
共 50 条
  • [1] Multiphysics Finite Element Method for Quasi-Static Thermo-Poroelasticity
    Chen, Yuxiang
    Ge, Zhihao
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
  • [2] A coupling of Galerkin and mixed finite element methods for the quasi-static thermo-poroelasticity with nonlinear convective transport
    Zhang, Jing
    Rui, Hongxing
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 441
  • [3] A locking-free numerical method for the quasi-static linear thermo-poroelasticity model
    Di, Yana
    He, Wenlong
    Zhang, Jiwei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [4] Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport
    Brun, Mats Kirkesaether
    Ahmed, Elyes
    Berre, Inga
    Nordbotten, Jan Martin
    Radu, Florin Adrian
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (08) : 1964 - 1984
  • [5] Wave propagation in thermo-poroelasticity: A finite-element approach
    Santos, Juan Enrique
    Carcion, Jose Mario
    Savioli, Gabriela Beatriz
    Ba, Jing
    [J]. GEOPHYSICS, 2023, 88 (01) : WA161 - WA175
  • [6] Analysis of a multiphysics finite element method for a poroelasticity model
    Feng, Xiaobing
    Ge, Zhihao
    Li, Yukun
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 330 - 359
  • [7] Nonlinear quasi-static poroelasticity
    Bociu, Lorena
    Webster, Justin T.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 296 : 242 - 278
  • [8] Multiphysics finite element method for a nonlinear poroelasticity model with finite strain
    Ge, Zhihao
    Lou, Hui
    [J]. CALCOLO, 2023, 60 (01)
  • [9] Multiphysics finite element method for a nonlinear poroelasticity model with finite strain
    Zhihao Ge
    Hui Lou
    [J]. Calcolo, 2023, 60
  • [10] DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR QUASI-STATIC POROELASTICITY PROBLEMS
    Chen, Fan
    Cui, Ming
    Zhou, Chenguang
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (02) : 201 - 220