Synthesis and characterization of niobium doped hexagonal tungsten bronze in the systems, CsxNbyW1−yO3

被引:0
|
作者
Kalpana R. Dey
Tapas Debnath
Claus H. Rüscher
Margareta Sundberg
Altaf Hussain
机构
[1] Institute of Mineralogy and Centre of Solid State Chemistry and New Materials (ZFM) of Leibniz University Hannover,Department of Materials and Environmental Chemistry, Arrhenius Laboratory
[2] Stockholm University,Department of Chemistry
[3] University of Dhaka,Department of Chemistry and Biochemistry
[4] Jackson State University,undefined
来源
关键词
Rietveld Refinement; Type Phase; Tungsten Bronze; Plasma Edge; Alkali Metal Atom;
D O I
暂无
中图分类号
学科分类号
摘要
Samples of nominal compositions, Cs0.25NbyW1−yO3 and Cs0.3NbyW1−yO3 with 0.0 ≤ y ≤ 0.25 and 0.0 ≤ y ≤ 0.3 were synthesized using appropriate amounts of Cs2WO4, WO3 and WO2 in evacuated and closed silica glass tubes at 800 °C. The polycrystalline products contain hexagonal shaped crystals of up to 15 μm diameter as long as y ≤ 0.15. X-ray powder patterns of the samples reveal the formation of hexagonal tungsten bronze (HTB-I) type phase with y < 0.1. A mixture of HTB-I and an analogous less reduced hexagonal tungsten bronze (HTB-II) type phase is seen when y ≥ 0.1. HTB-II content increases with increasing y, revealing close similarity to bronzoid type phases when y = x. Results of SEM/EDX analysis also support a partial substitution of tungsten by niobium in the HTB-I type phase. Infrared absorption and optical reflectivity data shows the effect of increasing amount of non-metallic phase for y > 0.1 and the effect of counterdoping by Nb5+/W5+ substitution in the metallic HTB-I type phase for y ≤ 0.1, respectively. Reinvestigations in the system Rb0.3NbyW1−yO3 (0.0 ≤ y ≤ 0.175) show similar results with increasing content of HTB-II type phase related with y.
引用
收藏
页码:1388 / 1395
页数:7
相关论文
共 50 条
  • [1] Synthesis and characterization of niobium doped hexagonal tungsten bronze in the systems, CsxNbyW1-yO3
    Dey, Kalpana R.
    Debnath, Tapas
    Ruescher, Claus H.
    Sundberg, Margareta
    Hussain, Altaf
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (05) : 1388 - 1395
  • [2] Synthesis and characterization of niobium-doped potassium tetragonal tungsten bronzes, KxNbyW1−yO3
    Tapas Debnath
    Subrata Chandra Roy
    Claus H. Rüscher
    Altaf Hussain
    Journal of Materials Science, 2009, 44 : 179 - 185
  • [3] Synthesis and characterization of niobium substituted hexagonal tungsten bronzes
    Hussain, A
    Ul-Monir, A
    Murshed, MM
    Rüscher, CH
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2002, 628 (02): : 416 - 420
  • [4] Synthesis of LixNa1 − xTayNb1 − yO3 and LiTayNb1 − yO3 perovskite and pseudoilmenite solid solutions
    M. N. Palatnikov
    N. V. Sidorov
    O. V. Makarova
    V. T. Kalinnikov
    Inorganic Materials, 2013, 49 : 1048 - 1054
  • [5] New series of vanadium doped hexagonal tungsten bronze, MxW1-yVyO3
    Debnath, Tapas
    Hossain, Istiak
    Tashnim, Habiba
    Ruescher, Claus H.
    Hussain, Altaf
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C512 - C512
  • [6] Synthesis, Structure and Dielectric Property of Ba1- xSrxZryTi1- yO3
    DING Shi wen **
    Chemical Research in Chinese Universities, 1999, (03) : 267 - 270
  • [7] Perovskite La1-xSrxGa1-yMn yO3 solid solution crystals: Raman spectroscopy characterization
    Runka, T.
    Berkowski, M.
    JOURNAL OF MATERIALS SCIENCE, 2012, 47 (14) : 5393 - 5401
  • [8] PREPARATION AND CHARACTERIZATION OF A HEXAGONAL AMMONIUM TUNGSTEN BRONZE PHASE (NH4)XWO3
    DICKENS, PG
    HALLIWEL.AC
    MURPHY, DJ
    WHITTING.MS
    TRANSACTIONS OF THE FARADAY SOCIETY, 1971, 67 (579): : 794 - &
  • [9] EMR study of electronic and magnetic ordering in doped CaMn1-x,yMx,yO3 (M = Ru, Mo) perovskites
    Shames, AI
    Auslender, M
    Rozenberg, E
    Gorodetsky, G
    Martin, C
    Maignan, A
    ACTA PHYSICA POLONICA A, 2005, 108 (02) : 235 - 242
  • [10] Ceramic Solid Solutions of Li0.17Na0.83TayNb1 –yO3: Thermobaric Synthesis, Microstructure, and Properties
    V. V. Efremov
    O. B. Shcherbina
    M. N. Palatnikov
    Yu. V. Radyush
    Technical Physics, 2020, 65 : 896 - 903