Delayed deconfinement and the Hawking-Page transition

被引:0
|
作者
Christian Copetti
Alba Grassi
Zohar Komargodski
Luigi Tizzano
机构
[1] Instituto de Fisica Teorica UAM/CSIC,
[2] c/Nicolas Cabrera 13-15,undefined
[3] Simons Center for Geometry and Physics,undefined
[4] SUNY,undefined
[5] Institut für Theoretische Physik,undefined
[6] ETH Zürich,undefined
关键词
AdS-CFT Correspondence; Matrix Models; Nonperturbative Effects; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We revisit the confinement/deconfinement transition in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills (SYM) theory and its relation to the Hawking-Page transition in gravity. Recently there has been substantial progress on counting the microstates of 1/16-BPS extremal black holes. However, there is presently a mismatch between the Hawking-Page transition and its avatar in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM. This led to speculations about the existence of new gravitational saddles that would resolve the mismatch. Here we exhibit a phenomenon in complex matrix models which we call “delayed deconfinement.” It turns out that when the action is complex, due to destructive interference, tachyonic modes do not necessarily condense. We demonstrate this phenomenon in ordinary integrals, a simple unitary matrix model, and finally in the context of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM. Delayed deconfinement implies a first-order transition, in contrast to the more familiar cases of higher-order transitions in unitary matrix models. We determine the deconfinement line and find remarkable agreement with the prediction of gravity. On the way, we derive some results about the Gross-Witten-Wadia model with complex couplings. Our techniques apply to a wide variety of (SUSY and non-SUSY) gauge theories though in this paper we only discuss the case of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM.
引用
收藏
相关论文
共 50 条
  • [1] Delayed deconfinement and the Hawking-Page transition
    Copetti, Christian
    Grassi, Alba
    Komargodski, Zohar
    Tizzano, Luigi
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
  • [2] Hawking-Page phase transition on the brane
    Chamblin, A
    Karch, A
    [J]. PHYSICAL REVIEW D, 2005, 72 (06):
  • [3] Generalized Hawking-Page phase transition
    Majumdar, Parthasarathi
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (07) : 1747 - 1753
  • [4] Hawking-Page transition on a spin chain
    Perez-Garcia, David
    Santilli, Leonardo
    Tierz, Miguel
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [5] String corrections to the Hawking-page phase transition
    Landsteiner, K
    [J]. MODERN PHYSICS LETTERS A, 1999, 14 (05) : 379 - 385
  • [6] Thermodynamics and kinetics of Hawking-Page phase transition
    Li, Ran
    Wang, Jin
    [J]. PHYSICAL REVIEW D, 2020, 102 (02)
  • [7] Effect of dark energy on Hawking-Page transition
    Wu, Yao
    Xu, Wei
    [J]. PHYSICS OF THE DARK UNIVERSE, 2020, 27
  • [8] No Hawking-Page phase transition in three dimensions
    Myung, YS
    [J]. PHYSICS LETTERS B, 2005, 624 (3-4) : 297 - 303
  • [9] Hawking-Page transition in holographic massive gravity
    Adams, Allan
    Roberts, Daniel A.
    Saremi, Omid
    [J]. PHYSICAL REVIEW D, 2015, 91 (04):
  • [10] Topology of critical points and Hawking-Page transition
    Yerra, Pavan Kumar
    Bhamidipati, Chandrasekhar
    Mukherji, Sudipta
    [J]. PHYSICAL REVIEW D, 2022, 106 (06)