Multi-peak solutions for the Hénon equation with slightly subcritical growth

被引:4
|
作者
Angela Pistoia
Enrico Serra
机构
[1] Università di Roma “La Sapienza”,Dipartimento di Metodi e Modelli Matematici
[2] Università di Milano,Dipartimento di Matematica
来源
Mathematische Zeitschrift | 2007年 / 256卷
关键词
Hénon equation; Blowing up solutions; Critical exponent; Ground state solution; 35J60; 35J20; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Dirichlet problem for the Hénon equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ \begin{array}{ll} -\Delta u=|x|^\alpha u^{\frac{N+2}{N-2}-\varepsilon} &\hbox{in } \Omega,\\ u > 0 &\hbox{in } \Omega,\\ u=0 &\hbox{on } \partial\Omega,\\ \end{array}\right. $$\end{document} where Ω is the unit ball in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^N$$\end{document}, with N ≥ 3, the power α is positive and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} is a small positive parameter. We prove that for every integer k ≥ 1 the above problem has a solution which blows up at k different points of ∂Ω as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} goes to zero. We also show that the ground state solution (which blows up at one point) is unique.
引用
收藏
相关论文
共 50 条
  • [1] Multi-peak solutions for the Henon equation with slightly subcritical growth
    Pistoia, Angela
    Serra, Enrico
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (01) : 75 - 97
  • [2] Interior Multi-Peak Solutions for a Slightly Subcritical Nonlinear Neumann Equation
    Ben Ayed, Mohamed
    El Mehdi, Khalil
    Salem, Fatimetou Mohamed
    [J]. SYMMETRY-BASEL, 2024, 16 (03):
  • [3] Multi-peak solutions for nonlinear Choquard equation in the plane
    Sun, Xiaomei
    Zhu, Anqiang
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
  • [4] Multi-peak solutions of Kirchhoff equations involving subcritical or critical Sobolev exponents
    Wang, Zhuangzhuang
    Zeng, Xiaoyu
    Zhang, Yimin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5151 - 5161
  • [5] MULTI-PEAK POSITIVE SOLUTIONS FOR A FRACTIONAL NONLINEAR ELLIPTIC EQUATION
    Shang, Xudong
    Zhang, Jihui
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (07) : 3183 - 3201
  • [6] MULTI-PEAK SOLUTIONS FOR NONLINEAR CHOQUARD EQUATION WITH A GENERAL NONLINEARITY
    Yang, Minbo
    Zhang, Jianjun
    Zhang, Yimin
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (02) : 493 - 512
  • [7] Multi-peak Solutions of a Nonlinear Schrodinger Equation with Magnetic Fields
    Liu, Weiming
    Wang, Chunhua
    [J]. ADVANCED NONLINEAR STUDIES, 2014, 14 (04) : 951 - 975
  • [8] Multi-peak soliton solutions of the generalized breaking soliton equation
    Kumar, Praveen
    Kumar, Dharmendra
    [J]. PHYSICA SCRIPTA, 2022, 97 (10)
  • [9] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Li, Gongbao
    Niu, Yahui
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 90 - 112
  • [10] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK POSITIVE SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATION
    李工宝
    牛亚慧
    [J]. Acta Mathematica Scientia, 2020, 40 (01) : 90 - 112