A deep learning algorithm for white matter hyperintensity lesion detection and segmentation

被引:0
|
作者
Yajing Zhang
Yunyun Duan
Xiaoyang Wang
Zhizheng Zhuo
Sven Haller
Frederik Barkhof
Yaou Liu
机构
[1] Philips Healthcare,MR Clinical Science
[2] Capital Medical University,Department of Radiology, Beijing Tiantan Hospital, Fengtai District
[3] University of Geneva,Department of Imaging and Medical Informatics
[4] University of Geneva,Faculty of Medicine
[5] Amsterdam University Medical Center,Department of Radiology and Nuclear Medicine
[6] University College,Queen Square Institute of Neurology and Center for Medical Image Computing
来源
Neuroradiology | 2022年 / 64卷
关键词
White matter hyperintensity; Automated detection and segmentation; Multiple sclerosis; Multicentre; FLAIR;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:727 / 734
页数:7
相关论文
共 50 条
  • [1] A deep learning algorithm for white matter hyperintensity lesion detection and segmentation
    Zhang, Yajing
    Duan, Yunyun
    Wang, Xiaoyang
    Zhuo, Zhizheng
    Haller, Sven
    Barkhof, Frederik
    Liu, Yaou
    NEURORADIOLOGY, 2022, 64 (04) : 727 - 734
  • [2] Fusing Unsupervised and Supervised Deep Learning for White Matter Lesion Segmentation
    Baur, Christoph
    Wiestler, Benedikt
    Albarqouni, Shadi
    Navab, Nassir
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 102, 2019, 102 : 63 - 72
  • [3] A large margin algorithm for automated segmentation of white matter hyperintensity
    Qin, Chen
    Guerrero, Ricardo
    Bowles, Christopher
    Chen, Liang
    Dickie, David Alexander
    Valdes-Hernandez, Maria del C.
    Wardlaw, Joanna
    Rueckert, Daniel
    PATTERN RECOGNITION, 2018, 77 : 150 - 159
  • [4] Deep learning-based reconstruction enhanced image quality and lesion detection of white matter hyperintensity through in FLAIR MRI
    Sun, Jie ping
    Bu, Chun xiao
    Dang, Jing han
    Lv, Qing qing
    Tao, Qiu ying
    Kang, Yi meng
    Niu, Xiao yu
    Wen, Bao hong
    Wang, Wei jian
    Wang, Kai yu
    Cheng, Jing liang
    Zhang, Yong
    ASIAN JOURNAL OF SURGERY, 2025, 48 (01) : 342 - 349
  • [5] Ensemble learning via supervision augmentation for white matter hyperintensity segmentation
    Guo, Xutao
    Ye, Chenfei
    Yang, Yanwu
    Zhang, Li
    Liang, Li
    Lu, Shang
    Lv, Haiyan
    Guo, Chunjie
    Ma, Ting
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [6] An improved algorithm of white matter hyperintensity detection in elderly adults
    Ding, T.
    Cohen, A. D.
    O'Connor, E. E.
    Karim, H. T.
    Crainiceanu, A.
    Muschelli, J.
    Lopez, O.
    Klunk, W. E.
    Aizenstein, H. J.
    Krafty, R.
    Crainiceanu, C. M.
    Tudorascu, D. L.
    NEUROIMAGE-CLINICAL, 2020, 25
  • [7] White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks
    Guerrero, R.
    Qin, C.
    Oktay, O.
    Bowles, C.
    Chen, L.
    Joules, R.
    Wolz, R.
    Valdes-Hernandez, M. C.
    Dickie, D. A.
    Wardlaw, J.
    Rueckert, D.
    NEUROIMAGE-CLINICAL, 2018, 17 : 918 - 934
  • [8] A quantitative analysis of deep learning methods for multiple sclerosis white matter lesion segmentation
    Clerigues, A.
    Valverde, S.
    Bernal, J.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrenta, L.
    Rovira, A.
    Oliver, A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 637 - 638
  • [9] Automatic Detection of Cognitive Impairment in Patients With White Matter Hyperintensity Using Deep Learning and Radiomics
    Feng, Junbang
    Le, Xingyan
    Li, Li
    Tang, Lin
    Xia, Yuwei
    Shi, Feng
    Guo, Yi
    Zhou, Yueqin
    Li, Chuanming
    AMERICAN JOURNAL OF ALZHEIMERS DISEASE AND OTHER DEMENTIAS, 2025, 40
  • [10] A Semi-supervised Large Margin Algorithm for White Matter Hyperintensity Segmentation
    Qin, Chen
    Moreno, Ricardo Guerrero
    Bowles, Christopher
    Ledig, Christian
    Scheltens, Philip
    Barkhof, Frederik
    Rhodius-Meester, Hanneke
    Tijms, Betty
    Lemstra, Afina W.
    van der Flier, Wiesje M.
    Glocker, Ben
    Rueckert, Daniel
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016, 2016, 10019 : 104 - 112