Predicting taxonomic and functional structure of microbial communities in acid mine drainage

被引:0
|
作者
Jialiang Kuang
Linan Huang
Zhili He
Linxing Chen
Zhengshuang Hua
Pu Jia
Shengjin Li
Jun Liu
Jintian Li
Jizhong Zhou
Wensheng Shu
机构
[1] State Key Laboratory of Biocontrol,Institute for Environmental Genomics and Department of Microbiology and Plant Biology
[2] Guangdong Key Laboratory of Plant Resources and Conservation of Guangdong Higher Education Institutes,Earth Sciences Division
[3] College of Ecology and Evolution,undefined
[4] Sun Yat-sen University,undefined
[5] University of Oklahoma,undefined
[6] Lawrence Berkeley National Laboratory,undefined
[7] State Key Joint Laboratory of Environment Simulation and Pollution Control,undefined
[8] School of Environment,undefined
[9] Tsinghua University,undefined
来源
The ISME Journal | 2016年 / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray–Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural acidophilic microbial communities.
引用
收藏
页码:1527 / 1539
页数:12
相关论文
共 50 条
  • [1] Predicting taxonomic and functional structure of microbial communities in acid mine drainage
    Kuang, Jialiang
    Huang, Linan
    He, Zhili
    Chen, Linxing
    Hua, Zhengshuang
    Jia, Pu
    Li, Shengjin
    Liu, Jun
    Li, Jintian
    Zhou, Jizhong
    Shu, Wensheng
    [J]. ISME JOURNAL, 2016, 10 (06): : 1527 - 1539
  • [2] Microbial communities in acid mine drainage
    Baker, BJ
    Banfield, JF
    [J]. FEMS MICROBIOLOGY ECOLOGY, 2003, 44 (02) : 139 - 152
  • [3] Microbial Communities in Acid Mine Drainage and Their Interaction with Pyrite Surface
    Xuehui Xie
    Shengmu Xiao
    Jianshe Liu
    [J]. Current Microbiology, 2009, 59
  • [4] Microbial communities, processes and functions in acid mine drainage ecosystems
    Chen, Lin-xing
    Huang, Li-nan
    Mendez-Garcia, Celia
    Kuang, Jia-liang
    Hua, Zheng-shuang
    Liu, Jun
    Shu, Wen-sheng
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2016, 38 : 150 - 158
  • [5] Microbial Communities in Acid Mine Drainage and Their Interaction with Pyrite Surface
    Xie, Xuehui
    Xiao, Shengmu
    Liu, Jianshe
    [J]. CURRENT MICROBIOLOGY, 2009, 59 (01) : 71 - 77
  • [6] Inter-species interconnections in acid mine drainage microbial communities
    Comolli, Luis R.
    Banfield, Jill F.
    [J]. FRONTIERS IN MICROBIOLOGY, 2014, 5
  • [7] Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage
    Chen, Lin-xing
    Hu, Min
    Huang, Li-nan
    Hua, Zheng-shuang
    Kuang, Jia-liang
    Li, Sheng-jin
    Shu, Wen-sheng
    [J]. ISME JOURNAL, 2015, 9 (07): : 1579 - 1592
  • [8] Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage
    Lin-xing Chen
    Min Hu
    Li-nan Huang
    Zheng-shuang Hua
    Jia-liang Kuang
    Sheng-jin Li
    Wen-sheng Shu
    [J]. The ISME Journal, 2015, 9 : 1579 - 1592
  • [9] GeoChip-Based Analysis of the Functional Gene Diversity and Metabolic Potential of Microbial Communities in Acid Mine Drainage
    Xie, Jianping
    He, Zhili
    Liu, Xinxing
    Liu, Xueduan
    Van Nostrand, Joy D.
    Deng, Ye
    Wu, Liyou
    Zhou, Jizhong
    Qiu, Guanzhou
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (03) : 991 - 999
  • [10] Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems
    Bond, PL
    Druschel, GK
    Banfield, JF
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (11) : 4962 - +