Characterization of CMO via compactness of the commutators of bilinear fractional integral operators

被引:0
|
作者
Dinghuai Wang
Jiang Zhou
Zhidong Teng
机构
[1] Nanjing Normal University,School of Mathematical Sciences
[2] Xinjiang University,College of Mathematics and System Sciences
来源
关键词
Bilinear fractional integral operators; Characterization; Compactness; Iterated commutator; Primary 42B20; Secondary 47B07; 42B35; 47G99;
D O I
暂无
中图分类号
学科分类号
摘要
We give a partial positive answer to the open problem proposed in Wang et al. (Acta Math Sin Ser A 35:1106–1114, 2015), that is, we characterize the BMO space via the boundedness of iterated commutator of bilinear fractional integral operator [Πb→,Iα]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\Pi \vec {b},I_{\alpha }]$$\end{document}. Moreover, it is showed that the symbol b belongs to CMO, the closure in BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{BMO}$$\end{document} of the space of C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{\infty }$$\end{document} functions with compact support, if and only if the commutator [Πb→,Iα]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\Pi \vec {b},I_{\alpha }]$$\end{document} is a compact operator with b→=(b,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {b}=(b,b)$$\end{document}. On the other hand, Bényi et al. (Math Z 208:569–582, 2015) obtained the separate compactness for commutators of the class Bα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\alpha }$$\end{document}, when b∈CMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathrm{CMO}$$\end{document}. In this paper, it is proved that b∈CMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathrm{CMO}$$\end{document} is necessary for [b,Bα]i(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b,B_{\alpha }]_{i}(i=1,2)$$\end{document} is a compact operator.
引用
收藏
页码:1669 / 1688
页数:19
相关论文
共 50 条