Quasi-periodicity and chaos in a differentially heated cavity

被引:0
|
作者
Isabel Mercader
Oriol Batiste
Xavier Ruiz
机构
[1] Universitat Politècnica de Catalunya,Dep. Física Aplicada
[2] Univesitat Rovira i Virgili,Lab. Física Aplicada, Facultat de Ciències Químiques
关键词
natural convection; nonlinear dynamics; chaos; quasiperiodicity;
D O I
暂无
中图分类号
学科分类号
摘要
Convective flows of a small Prandtl number fluid contained in a two-dimensional vertical cavity subject to a lateral thermal gradient are studied numerically. The chosen geometry and the values of the material parameters are relevant to semiconductor crystal growth experiments in the horizontal configuration of the Bridgman method. For increasing Rayleigh numbers we find a transition from a steady flow to periodic solutions through a supercritical Hopf bifurcation that maintains the centro-symmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation, the periodic solution loses stability in a subcritical Neimark–Sacker bifurcation, which gives rise to a branch of quasiperiodic states. In this branch, several intervals of frequency locking have been identified. Inside the resonance horns the stable limit cycles lose and gain stability via some typical scenarios in the bifurcation of periodic solutions. After a complicated bifurcation diagram of the stable limit cycle of the 1:10 resonance horn, a soft transition to chaos is obtained.
引用
收藏
页码:221 / 229
页数:8
相关论文
共 50 条
  • [1] Quasi-periodicity and chaos in a differentially heated cavity
    Mercader, I
    Batiste, O
    Ruiz, X
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2004, 18 (2-4) : 221 - 229
  • [2] From chaos to quasi-periodicity
    Alexander P. Kuznetsov
    Natalia A. Migunova
    Igor R. Sataev
    Yuliya V. Sedova
    Ludmila V. Turukina
    Regular and Chaotic Dynamics, 2015, 20 : 189 - 204
  • [3] From chaos to quasi-periodicity
    Kuznetsov, Alexander P.
    Migunova, Natalia A.
    Sataev, Igor R.
    Sedova, Yuliya V.
    Turukina, Ludmila V.
    REGULAR & CHAOTIC DYNAMICS, 2015, 20 (02): : 189 - 204
  • [4] QUASI-PERIODICITY AND CHAOS DURING AN ELECTROCHEMICAL REACTION
    BASSETT, MR
    HUDSON, JL
    JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (07): : 2731 - 2737
  • [5] A UNIVERSAL TRANSITION FROM QUASI-PERIODICITY TO CHAOS
    SIGGIA, ED
    PHYSICA D, 1983, 7 (1-3): : 302 - 302
  • [6] QUASI-PERIODICITY AND CHAOS IN THE GUNN-EFFECT
    JIANG, ZF
    MA, BK
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1991, 52 (01): : 10 - 12
  • [7] QUASI-PERIODICITY AND CHAOS IN POPULATION-MODELS
    ROHANI, P
    MIRAMONTES, O
    HASSELL, MP
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1994, 258 (1351) : 17 - 22
  • [8] QUASI-PERIODICITY ROUTE TO CHAOS IN NEURAL NETWORKS
    BAUER, M
    MARTIENSSEN, W
    EUROPHYSICS LETTERS, 1989, 10 (05): : 427 - 431
  • [9] CHAOS AND QUASI-PERIODICITY IN DIFFEOMORPHISMS OF THE SOLID TORUS
    Broer, Henk W.
    Simo, Carles
    Vitolo, Renato
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (03): : 871 - 905
  • [10] CHAOS THROUGH QUASI-PERIODICITY AND STRANGE ATTRACTORS
    DUBOIS, M
    JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (5-6) : 1015 - 1018