Periodic points of positive linear operators and Perron-Frobenius operators

被引:0
|
作者
Roger Nussbaum
机构
[1] Rutgers University,Department of Mathematics, Hill Center
来源
关键词
Primary 47B65; 15A48; 47H07;
D O I
暂无
中图分类号
学科分类号
摘要
LetC(S) denote the Banach space of continuous, real-valued mapsf:S→ℝ and letA denote a positive linear map ofC(S) into itself. We give necessary conditions that the operatorA have a strictly positive periodic point of minimal periodm. Under mild compactness conditions on the operatorA, we prove that these necessary conditions are also sufficient to guarantee existence of a strictly positive periodic point of minimal periodm. We study a class of Perron-Frobenius operators defined by\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {Ax} \right)\left( t \right) = \sum\limits_{i = 1}^\infty {b_i \left( t \right)x\left( {w_i \left( t \right)} \right)} $$ \end{document} and we show how to verify the necessary compactness conditions to apply our theorems concerning existence of positive periodic points.
引用
收藏
页码:41 / 97
页数:56
相关论文
共 50 条