Isospectrality and galois projective geometries

被引:0
|
作者
Ya. B. Vorobets
A. M. Stepin
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 1998年 / 63卷
关键词
spectrum of the Laplace operator; isospectral manifolds; finite projective geometries; projective transformations;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a series of pairs of domains in the plane and pairs of surfaces with boundary that are isospectral but not isometric. The construction is based on the existence of finite transformation groups that are spectrally equivalent but not isomorphic.
引用
收藏
页码:582 / 585
页数:3
相关论文
共 50 条
  • [1] Isospectrality and Galois projective geometries
    Vorobets, YB
    Stepin, AM
    MATHEMATICAL NOTES, 1998, 63 (5-6) : 582 - 585
  • [2] Galois geometries and applications
    Jan De Beule
    Yves Edel
    Emilia Käsper
    Andreas Klein
    Svetla Nikova
    Bart Preneel
    Jeroen Schillewaert
    Leo Storme
    Designs, Codes and Cryptography, 2010, 56 : 85 - 86
  • [3] Galois geometries and applications
    De Beule, Jan
    Edel, Yves
    Kasper, Emilia
    Klein, Andreas
    Nikova, Svetla
    Preneel, Bart
    Schillewaert, Jeroen
    Storme, Leo
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (2-3) : 85 - 86
  • [5] ASYMPTOTIC QUESTIONS IN GALOIS GEOMETRIES
    TALLINI, G
    DISCRETE MATHEMATICS, 1994, 129 (1-3) : 191 - 203
  • [6] Galois geometries and coding theory
    Etzion, T.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (01) : 311 - 350
  • [7] PROJECTIVE ISOMONODROMY AND GALOIS GROUPS
    Mitschi, Claude
    Singer, Michael F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 605 - 617
  • [8] Galois geometries and coding theory
    T. Etzion
    L. Storme
    Designs, Codes and Cryptography, 2016, 78 : 311 - 350
  • [9] Finite fields and Galois geometries
    Thas, J. A.
    FINITE FIELDS AND APPLICATIONS, 2008, 461 : 251 - 265
  • [10] Galois Theory and Projective Geometry
    Bogomolov, Fedor
    Tschinkel, Yuri
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (09) : 1335 - 1359