Some Results on the Approximation of Solutions of Variational Inequalities for Multivalued Maps on Banach Spaces

被引:0
|
作者
Luigi Muglia
Giuseppe Marino
机构
[1] Universitá della Calabria,Dipartimento di Matematica
来源
关键词
Strongly accretive operators; variational inequality problem; iterative method; -nonexpansive multivalued; 47J20; 47J25; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
Multivalued ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-nonexpansive mappings are studied in Banach spaces. The demiclosedness principle is established. Here we focus on the problem of solving a variational inequality which is defined on the set of fixed points of a multivalued ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-nonexpansive mapping. For this purpose, we introduce two algorithms approximating the unique solution of the variational inequality.
引用
收藏
相关论文
共 50 条