Classification of the centers, of their cyclicity and isochronicity for two classes of generalized quintic polynomial differential systems

被引:0
|
作者
Jaume Llibre
Clàudia Valls
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] Instituto Superior Técnico,Departamento de Matemática
关键词
34C05; 58F14; Center; Isochronous center; Cyclicity; Polynomial vector fields;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we classify the centers localized at the origin of coordinates, the cyclicity of their Hopf bifurcation and their isochronicity for the polynomial differential systems in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document} of degree d that in complex notation z = x + iy can be written as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot z = (\lambda+i) z + (z \overline{z})^{\frac{d-5}{2}} \left(A z^{4+j} \overline{z}^{1-j} + B z^3 \overline{z}^2 + C z^{2-j} \overline{z}^{3+j}+D \overline{z}^5\right), $$\end{document}where j is either 0 or 1, d is an arbitrary odd positive integer greater than or equal to five, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in \mathbb{R}}$$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A,B,C,D \in \mathbb{C}}$$\end{document}. Note that if d = 5 we obtain special families of quintic polynomial differential systems.
引用
收藏
相关论文
共 50 条