In this paper we classify the centers localized at the origin of coordinates, the cyclicity of their Hopf bifurcation and their isochronicity for the polynomial differential systems in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^2}$$\end{document} of degree d that in complex notation z = x + iy can be written as\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot z = (\lambda+i) z + (z \overline{z})^{\frac{d-5}{2}} \left(A z^{4+j} \overline{z}^{1-j} + B z^3 \overline{z}^2 + C z^{2-j} \overline{z}^{3+j}+D \overline{z}^5\right), $$\end{document}where j is either 0 or 1, d is an arbitrary odd positive integer greater than or equal to five, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda \in \mathbb{R}}$$\end{document}, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A,B,C,D \in \mathbb{C}}$$\end{document}. Note that if d = 5 we obtain special families of quintic polynomial differential systems.
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
Linyi Univ, Sch Sci, Linyi 276005, Shandong, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
Li Feng
Liu Yirong
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China