The symmetric quadratic knapsack problem: approximation and scheduling applications

被引:0
|
作者
Hans Kellerer
Vitaly A. Strusevich
机构
[1] Universität Graz,Institut für Statistik und Operations Research
[2] University of Greenwich,School of Computing and Mathematical Science
来源
4OR | 2012年 / 10卷
关键词
Quadratic knapsack; Half-product; Single machine scheduling; FPTAS; 90-02; 90C09; 90C20; 90C59; 90B35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper reviews two problems of Boolean non-linear programming: the Symmetric Quadratic Knapsack Problem and the Half-Product Problem. The problems are related since they have a similar quadratic non-separable objective function. For these problems, we focus on the development of fully polynomial-time approximation schemes, especially of those with strongly polynomial time, and on their applications to various scheduling problems.
引用
收藏
页码:111 / 161
页数:50
相关论文
共 50 条
  • [1] The symmetric quadratic knapsack problem: approximation and scheduling applications
    Kellerer, Hans
    Strusevich, Vitaly A.
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (02): : 111 - 161
  • [2] Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications
    Kellerer, Hans
    Strusevich, Vitaly A.
    ALGORITHMICA, 2010, 57 (04) : 769 - 795
  • [3] Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications
    Hans Kellerer
    Vitaly A. Strusevich
    Algorithmica, 2010, 57 : 769 - 795
  • [4] Approximation of the Quadratic Knapsack Problem
    Taylor, Richard
    OPERATIONS RESEARCH LETTERS, 2016, 44 (04) : 495 - 497
  • [5] Approximation of the Quadratic Knapsack Problem
    Pferschy, Ulrich
    Schauer, Joachim
    INFORMS JOURNAL ON COMPUTING, 2016, 28 (02) : 308 - 318
  • [6] On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
    Britta Schulze
    Michael Stiglmayr
    Luís Paquete
    Carlos M. Fonseca
    David Willems
    Stefan Ruzika
    Mathematical Methods of Operations Research, 2020, 92 : 107 - 132
  • [7] On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
    Schulze, Britta
    Stiglmayr, Michael
    Paquete, Luis
    Fonseca, Carlos M.
    Willems, David
    Ruzika, Stefan
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 92 (01) : 107 - 132
  • [8] A strongly polynomial FPTAS for the symmetric quadratic knapsack problem
    Xu, Zhou
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 218 (02) : 377 - 381
  • [9] A CONIC APPROXIMATION METHOD FOR THE 0-1 QUADRATIC KNAPSACK PROBLEM
    Zhou, Jing
    Chen, Dejun
    Wang, Zhenbo
    Xing, Wenxun
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (03) : 531 - 547
  • [10] The GBT Dynamic Scheduling System: Scheduling Applications of the Knapsack Problem and Sudoku
    Sessoms, E.
    Clark, M.
    Marganian, P.
    McCarty, M.
    Shelton, A.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVIII, 2009, 411 : 351 - 354