We propose a Lagrangian for the low-energy theory that resides at the (1 + 1)-dimensional intersection of N semi-infinite M2-branes ending orthogonally on M M5-branes in ℝ1,2×ℂ4/ℤk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb{R}}^{1,2}\times {\mathbb{C}}^4/{\mathbb{Z}}_k $$\end{document} (for arbitrary positive integers N, M, k). We formulate this theory as a 2d boundary theory with explicit N=1,1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N}=\left(1,\;1\right) $$\end{document} supersymmetry that contains two superfields in the bi-fundamental representation of U(N )×U(M ) interacting with the (2+1)-dimensional U(N )k × U(N )−k ABJM Chern-Simons-matter theory in the bulk. We postulate that the boundary theory exhibits in the deep infrared supersymmetry enhancement to N=4,2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N}=\left(4,\;2\right) $$\end{document}, or N=4,4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N}=\left(4,\;4\right) $$\end{document} depending on the value of k. Arguments in favor of the proposal follow from the study of the open string theory of a U-dual type IIB Hanany-Witten setup. To formulate the bulk-boundary interactions special care is taken to incorporate all the expected boundary effects on gauge symmetry, supersymmetry, and other global symmetries.