A Lagrangian for self-dual strings

被引:0
|
作者
Vasilis Niarchos
机构
[1] University of Crete,Crete Center for Theoretical Physics, and Crete Center for Quantum Complexity and Nanotechnology, Department of Physics
来源
关键词
Supersymmetric gauge theory; Intersecting branes models; Chern-Simons Theories; M-Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a Lagrangian for the low-energy theory that resides at the (1 + 1)-dimensional intersection of N semi-infinite M2-branes ending orthogonally on M M5-branes in ℝ1,2×ℂ4/ℤk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{R}}^{1,2}\times {\mathbb{C}}^4/{\mathbb{Z}}_k $$\end{document} (for arbitrary positive integers N, M, k). We formulate this theory as a 2d boundary theory with explicit N=1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(1,\;1\right) $$\end{document} supersymmetry that contains two superfields in the bi-fundamental representation of U(N )×U(M ) interacting with the (2+1)-dimensional U(N )k × U(N )−k ABJM Chern-Simons-matter theory in the bulk. We postulate that the boundary theory exhibits in the deep infrared supersymmetry enhancement to N=4,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(4,\;2\right) $$\end{document}, or N=4,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(4,\;4\right) $$\end{document} depending on the value of k. Arguments in favor of the proposal follow from the study of the open string theory of a U-dual type IIB Hanany-Witten setup. To formulate the bulk-boundary interactions special care is taken to incorporate all the expected boundary effects on gauge symmetry, supersymmetry, and other global symmetries.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 50 条
  • [1] A Lagrangian for self-dual strings
    Niarchos, Vasilis
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12): : 1 - 19
  • [2] Constructing Self-Dual Strings
    Christian Sämann
    [J]. Communications in Mathematical Physics, 2011, 305 : 513 - 532
  • [3] Constructing Self-Dual Strings
    Saemann, Christian
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (02) : 513 - 532
  • [4] EXACTLY SOLVABLE SELF-DUAL STRINGS
    MYERS, RC
    PERIWAL, V
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (26) : 3111 - 3114
  • [5] Constructing generalized self-dual strings
    Sam Palmer
    Christian Sämann
    [J]. Journal of High Energy Physics, 2011
  • [6] Constructing generalized self-dual strings
    Palmer, Sam
    Samann, Christian
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10):
  • [7] SELF-DUAL STRINGS IN 4 DIMENSIONS
    KALITZIN, S
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (05) : L95 - L101
  • [8] Covariant field theory for self-dual strings
    Berkovits, N
    Siegel, W
    [J]. NUCLEAR PHYSICS B, 1997, 505 (1-2) : 139 - 152
  • [9] STRINGS AND SELF-DUAL GAUGE-FIELDS
    POPOV, AD
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1990, 51 (03): : 561 - 566
  • [10] The Lagrangian of a self-dual gravitational field as a limit of the SDYM Lagrangian
    Plebanski, JF
    Przanowski, M
    [J]. PHYSICS LETTERS A, 1996, 212 (1-2) : 22 - 28