L2-Cohomology for Von Neumann Algebras

被引:0
|
作者
Andreas Thom
机构
[1] Mathematisches Institut der Universität Göttingen,
来源
关键词
von Neumann algebras; Hochschild homology; derivations; group rings; 46L10;
D O I
暂无
中图分类号
学科分类号
摘要
We study L2-Betti numbers for von Neumann algebras, as defined by D. Shlyakhtenko and A. Connes in [CoS]. We give a definition of L2-cohomology and show how the study of the first L2-Betti number can be related to the study of derivations with values in a bi-module of affiliated operators. We show several results about the possibility of extending derivations from sub-algebras and about uniqueness of such extensions. In particular, we show that the first L2-Betti number of a tracial von Neumann algebra coincides with the corresponding number for an arbitrary weakly dense sub-C*-algebra.
引用
收藏
页码:251 / 270
页数:19
相关论文
共 50 条