Maker–Breaker Domination Number

被引:0
|
作者
Valentin Gledel
Vesna Iršič
Sandi Klavžar
机构
[1] Univ Lyon,Faculty of Mathematics and Physics
[2] Université Lyon 1,Faculty of Natural Sciences and Mathematics
[3] LIRIS UMR CNRS 5205,undefined
[4] Institute of Mathematics,undefined
[5] Physics and Mechanics,undefined
[6] University of Ljubljana,undefined
[7] University of Maribor,undefined
关键词
Maker–Breaker domination game; Maker–Breaker domination number; Domination game; Perfect matching; Tree; Cycle; Union of graphs; 05C57; 05C69; 91A43;
D O I
暂无
中图分类号
学科分类号
摘要
The Maker–Breaker domination game is played on a graph G by Dominator and Staller. The players alternatively select a vertex of G that was not yet chosen in the course of the game. Dominator wins if at some point the vertices he has chosen form a dominating set. Staller wins if Dominator cannot form a dominating set. In this paper, we introduce the Maker–Breaker domination number γMB(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\mathrm{MB}}(G)$$\end{document} of G as the minimum number of moves of Dominator to win the game provided that he has a winning strategy and is the first to play. If Staller plays first, then the corresponding invariant is denoted γMB′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\mathrm{MB}}'(G)$$\end{document}. Comparing the two invariants, it turns out that they behave much differently than the related game domination numbers. The invariant γMB(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\mathrm{MB}}(G)$$\end{document} is also compared with the domination number. Using the Erdős-Selfridge criterion, a large class of graphs G is found for which γMB(G)>γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\mathrm{MB}}(G) > \gamma (G)$$\end{document} holds. Residual graphs are introduced and used to bound/determine γMB(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\mathrm{MB}}(G)$$\end{document} and γMB′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\mathrm{MB}}'(G)$$\end{document}. Using residual graphs, γMB(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\mathrm{MB}}(T)$$\end{document} and γMB′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\mathrm{MB}}'(T)$$\end{document} are determined for an arbitrary tree. The invariants are also obtained for cycles and bounded for union of graphs. A list of open problems and directions for further investigations is given.
引用
收藏
页码:1773 / 1789
页数:16
相关论文
共 50 条
  • [1] Maker-Breaker Domination Number
    Gledel, Valentin
    Irsic, Vesna
    Klavzar, Sandi
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) : 1773 - 1789
  • [2] Maker-Breaker domination game
    Duchene, Eric
    Gledel, Valentin
    Parreau, Aline
    Renault, Gabriel
    [J]. DISCRETE MATHEMATICS, 2020, 343 (09)
  • [3] Maker-Breaker total domination game
    Gledel, Valentin
    Henning, Michael A.
    Irsic, Vesna
    Klavzar, Sandi
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 282 (282) : 96 - 107
  • [4] Maker–Breaker domination number for Cartesian products of path graphs P2 and Pn
    Forcan, Jovana
    Qi, Jiayue
    [J]. Discrete Mathematics and Theoretical Computer Science, 2024, 25 (02):
  • [5] Fast Winning Strategies for the Maker-Breaker Domination Game
    Gledel, Valentin
    Irsic, Vesna
    Klavzar, Sandi
    [J]. ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 473 - 484
  • [6] Maker-Breaker total domination game on cubic graphs
    Forcan, Jovana
    Mikalacki, Mirjana
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2022, 24 (01):
  • [7] Maker-Breaker domination game on trees when Staller wins
    Bujtas, Csilla
    Dokyeesun, Pakanun
    Klavzar, Sandi
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2023, 25 (02):
  • [8] Fast winning strategies for Staller in the Maker-Breaker domination game
    Bujtas, Csilla
    Dokyeesun, Pakanun
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 344 : 10 - 22
  • [9] Maker Breaker on digraphs
    Frieze, Alan
    Pegden, Wesley
    [J]. JOURNAL OF GRAPH THEORY, 2021, 98 (04) : 653 - 661
  • [10] The Maker-Maker domination game in forests
    Duchene, Eric
    Dumas, Arthur
    Oijid, Nacim
    Parreau, Aline
    Remila, Eric
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 348 : 6 - 34