The Bernstein Inequality for Slice Regular Polynomials

被引:0
|
作者
Zhenghua Xu
机构
[1] HeFei University of Technology,School of Mathematics
来源
关键词
Bernstein inequality; Turan inequality; Quaternion; 30C10; 41A17;
D O I
暂无
中图分类号
学科分类号
摘要
Due to the invalidation of the Gauss–Lucas type result for quaternionic polynomials, we first give in this paper an alternative proof of the Bernstein inequality in Lp(1≤p≤+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p} (1\le p \le +\infty )$$\end{document} for slice regular polynomials by the Fejér kernel and the Minkowski inequality. Secondly, we extend a result of Ankeny–Rivlin to the quaternionic setting via the Hopf lemma. By the way, some Turan inequalities are established for slice regular polynomials.
引用
收藏
页码:2575 / 2587
页数:12
相关论文
共 50 条