BMO Spaces on Weighted Homogeneous Trees

被引:0
|
作者
Laura Arditti
Anita Tabacco
Maria Vallarino
机构
[1] Politecnico di Torino,Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”, Dipartimento di Eccellenza 2018
来源
关键词
Hardy spaces; BMO spaces; Homogeneous trees; Nondoubling measure; Sharp maximal function; 05C05; 30H35; 42B30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an infinite homogeneous tree V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} endowed with the usual metric d defined on graphs and a weighted measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. The metric measure space (V,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {V}},d,\mu )$$\end{document} is nondoubling and of exponential growth, hence the classical theory of Hardy and BMO spaces does not apply in this setting. We introduce a space BMO(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BMO(\mu )$$\end{document} on (V,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {V}},d,\mu )$$\end{document} and investigate some of its properties. We prove in particular that BMO(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BMO(\mu )$$\end{document} can be identified with the dual of a Hardy space H1(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\mu )$$\end{document} introduced in a previous work and we investigate the sharp maximal function related with BMO(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BMO(\mu )$$\end{document}.
引用
收藏
页码:8832 / 8849
页数:17
相关论文
共 50 条