A convexity theorem for real projective structures

被引:0
|
作者
Jaejeong Lee
机构
[1] School of Mathematics,
[2] KIAS,undefined
来源
Geometriae Dedicata | 2016年 / 182卷
关键词
Convex real projective structures; Poincare fundamental polyhedron theorem; Alexandrov spaces of curvature bounded below; 57N16; 52B11;
D O I
暂无
中图分类号
学科分类号
摘要
Given a finite collection P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of convex n-polytopes in RPn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}\hbox {P}^n$$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}), we consider a real projective manifold M which is obtained by gluing together the polytopes in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} along their facets in such a way that the union of any two adjacent polytopes sharing a common facet is convex. We prove that the real projective structure on M is (1) convex if P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} contains no triangular polytope, and (2) properly convex if, in addition, P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} contains a polytope whose dual polytope is thick. Triangular polytopes and polytopes with thick duals are defined as analogues of triangles and polygons with at least five edges, respectively.
引用
收藏
页码:1 / 41
页数:40
相关论文
共 50 条