Dynamics of neuronal waves

被引:0
|
作者
Linghai Zhang
机构
[1] Lehigh University,Department of Mathematics
来源
Mathematische Zeitschrift | 2007年 / 255卷
关键词
On-center and off-center kernels; Symmetric and asymmetric kernels; Nonnegative and Mexican hat kernels; Wave-speed; Speed estimate; Traveling wave front; Relation between speed index function and stability index function; Standing wave; Stability; 92C20;
D O I
暂无
中图分类号
学科分类号
摘要
First of all, by studying the existence and stability of traveling wave fronts of the following nonlinear nonlocal model equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t+au_x+u=\alpha\mathop{\int}_{\mathbb R}K(x-y)H(u(y,t)-\theta){\rm d}y +\beta\mathop{\int}_{\mathbb R}K(x-y)H(u(y,t)-\Theta){\rm d}y,$$\end{document} we derive relation between speed index function and stability index function for each of the waves. This model was derived when studying working memory in synaptically coupled neuronal networks, which incorporates low persistent activity rate θ and high saturating rate Θ. We will investigate dynamics of neuronal waves. For this purpose, we will be concerned with the equation for several different kinds of symmetric and asymmetric kernels and will compare speeds of the waves. Our analysis and results on the speed index functions facilitate our investigation on stability of the waves and the estimates of speeds. Secondly, we are concerned with standing waves of the nonlinear nonhomogeneous system of integral-differential equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{lll} u_t+u+w& =&\alpha \mathop{\int}\limits_{\mathbb R}K(x-y)H(u(y,t)-\theta){\rm d}y\\ &&+\,\beta \mathop{\int}\limits_{\mathbb R}K(x-y)H(u(y,t)-\Theta){\rm d}y+{\mathcal I}(x,t),\\ w_t&=&\varepsilon(u-\gamma w),\end{array}$$\end{document} and the scalar equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{lll} u_t+u&=&\alpha \mathop{\int}\limits_{\mathbb R}K(x-y)H(u(y,t)-\theta){\rm d}y\\ &&+\,\beta \mathop{\int}\limits_{\mathbb R}K(x-y)H(u(y,t)-\Theta){\rm d}y+{\mathcal I}(x,t).\end{array}$$\end{document}
引用
收藏
页码:283 / 321
页数:38
相关论文
共 50 条
  • [1] Dynamics of neuronal waves
    Zhang, Linghai
    MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (02) : 283 - 321
  • [2] Neuronal travelling waves explain rotational dynamics in experimental datasets and modelling
    Kuzmina, Ekaterina
    Kriukov, Dmitrii
    Lebedev, Mikhail
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [3] Neuronal travelling waves explain rotational dynamics in experimental datasets and modelling
    Ekaterina Kuzmina
    Dmitrii Kriukov
    Mikhail Lebedev
    Scientific Reports, 14
  • [4] Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?
    Vitaly L. Galinsky
    Lawrence R. Frank
    Frontiers of Physics, 2023, 18
  • [5] Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?
    Galinsky, Vitaly L.
    Frank, Lawrence R.
    FRONTIERS OF PHYSICS, 2023, 18 (04)
  • [6] Neuronal avalanches:Sandpiles of self-organized criticality or critical dynamics of brain waves?
    Vitaly LGalinsky
    Lawrence RFrank
    Frontiers of Physics, 2023, 18 (04) : 331 - 342
  • [7] SLOW WAVES + NEURONAL ACTIVITY
    MARSAN, CA
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1964, 17 (04): : 467 - &
  • [8] Dynamics of neuronal bursting
    Cymbalyuk, Gennady S.
    JOURNAL OF BIOLOGICAL PHYSICS, 2011, 37 (03) : 239 - 240
  • [9] Aspects of neuronal dynamics
    Pawelzik, K
    JOURNAL OF PHYSIOLOGY-PARIS, 2000, 94 (5-6) : 301 - 302
  • [10] The Dynamics of Neuronal Migration
    Wu, Qian
    Liu, Jing
    Fang, Ai
    Li, Rui
    Bai, Ye
    Kriegstein, Arnold R.
    Wang, Xiaoqun
    CELLULAR AND MOLECULAR CONTROL OF NEURONAL MIGRATION, 2014, 800 : 25 - 36