External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients

被引:0
|
作者
Jakoba J. Eertink
Martijn W. Heymans
Gerben J. C. Zwezerijnen
Josée M. Zijlstra
Henrica C. W. de Vet
Ronald Boellaard
机构
[1] Amsterdam UMC Location Vrije Universiteit Amsterdam,Department of Hematology
[2] Cancer Center Amsterdam,Imaging and Biomarkers
[3] Amsterdam UMC Location Vrije Universiteit Amsterdam,Epidemiology and Data Science
[4] Amsterdam Public Health Research Institute,Methodology
[5] Amsterdam UMC Location Vrije Universiteit Amsterdam,Radiology and Nuclear Medicine
来源
关键词
Internal validation; External validation; Model performance; CV-AUC;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 26 条
  • [1] External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients
    Eertink, Jakoba J.
    Heymans, Martijn W.
    Zwezerijnen, Gerben J. C.
    Zijlstra, Josee M.
    de Vet, Henrica C. W.
    Boellaard, Ronald
    EJNMMI RESEARCH, 2022, 12 (01)
  • [2] A simulation study to compare cross-validation versus holdout or external testing to assess the performance of machine learning based clinical prediction rules
    Boellaard, R.
    Eertink, J. J.
    Lugtenburg, P. J.
    Zwezerijnen, G. J.
    Wiegers, S. E.
    de Vet, H. C.
    Zijlstra, J. M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S285 - S285
  • [3] Modest Performance of Heart Failure Clinical Prediction Models: A Systematic External Validation Study
    Upshaw, Jenica N.
    Nelson, Jason
    Wessler, Benjamin
    Koethe, Benjamin
    Lundquist, Christine
    Lutz, Jennifer
    van Klaveren, David
    Steyerberg, Ewout
    Kent, David M.
    CIRCULATION, 2018, 138
  • [4] Using interpretability approaches to update "black-box" clinical prediction models: an external validation study in nephrology
    Cruz, Harry Freitas da
    Pfahringer, Boris
    Martensen, Tom
    Schneider, Frederic
    Meyer, Alexander
    Boettinger, Erwin
    Schapranow, Matthieu-P.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 111
  • [5] Development and external validation of deep learning clinical prediction models using variable-length time series data
    Bashiri, Fereshteh S.
    Carey, Kyle A.
    Martin, Jennie
    Koyner, Jay L.
    Edelson, Dana P.
    Gilbert, Emily R.
    Mayampurath, Anoop
    Afshar, Majid
    Churpek, Matthew M.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (06) : 1322 - 1330
  • [6] Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
    de Jong, Valentijn M. T.
    Rousset, Rebecca Z.
    Antonio-Villa, Neftali Eduardo
    Buenen, Arnoldus G.
    Calster, Ben Van
    Bello-Chavolla, Omar Yaxmehen
    Brunskill, Nigel J.
    Curcin, Vasa
    Damen, Johanna A. A.
    Fermin-Martinez, Carlos A.
    Fernandez-Chirino, Luisa
    Ferrari, Davide
    Free, Robert C.
    Gupta, Rishi K.
    Haldar, Pranabashis
    Hedberg, Pontus
    Korang, Steven Kwasi
    Kurstjens, Steef
    Kusters, Ron
    Major, Rupert W.
    Maxwell, Lauren
    Nair, Rajeshwari
    Naucler, Pontus
    Nguyen, Tri-Long
    Noursadeghi, Mahdad
    Rosa, Rossana
    Soares, Felipe
    Takada, Toshihiko
    van Royen, Florien S.
    van Smeden, Maarten
    Wynants, Laure
    Modrak, Martin
    Asselbergs, Folkert W.
    Linschoten, Marijke
    Moons, Karel G. M.
    Debray, Thomas P. A.
    BMJ-BRITISH MEDICAL JOURNAL, 2022, 378
  • [7] External validation and comparison of four cardiovascular risk prediction models with data from the Australian Diabetes, Obesity and Lifestyle study
    Albarqouni, Loai
    Doust, Jennifer A.
    Magliano, Dianna
    Barr, Elizabeth L. M.
    Shaw, Jonathan E.
    Glasziou, Paul P.
    MEDICAL JOURNAL OF AUSTRALIA, 2019, 210 (04) : 161 - 167
  • [8] External Validation of Two 10-Year Stroke Risk Prediction Models Using Korean Genome and Epidemiology Study Data
    Lee, Eun Joo
    Kim, Seol Bin
    Jeong, Ihn Sook
    NURSING & HEALTH SCIENCES, 2025, 27 (01)
  • [9] Performance of an easy-to-use prediction model for renal patient survival: an external validation study using data from the ERA-EDTA Registry
    Hemke, Aline C.
    Heemskerk, Martin B. A.
    van Diepen, Merel
    Kramer, Anneke
    de Meester, Johan
    Heaf, James G.
    Abad Diez, Jose Maria
    Torres Guinea, Marta
    Finne, Patrik
    Brunet, Philippe
    Vikse, Bjorn E.
    Caskey, Fergus J.
    Traynor, Jamie P.
    Massy, Ziad A.
    Couchoud, Ceile
    Groothoff, Jaap W.
    Nordio, Maurizio
    Jager, Kitty J.
    Dekker, Friedo W.
    Hoitsma, Andries J.
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2018, 33 (10) : 1786 - 1793
  • [10] Enhancing generalization in a Kawasaki Disease prediction model using data augmentation: Cross-validation of patients from two major hospitals in Taiwan
    Hung, Chuan-Sheng
    Lin, Chun-Hung Richard
    Liu, Jain-Shing
    Chen, Shi-Huang
    Hung, Tsung-Chi
    Tsai, Chih-Min
    PLOS ONE, 2024, 19 (12):