Semantic interactive image retrieval combining visual and conceptual content description

被引:2
|
作者
Marin Ferecatu
Nozha Boujemaa
Michel Crucianu
机构
[1] INRIA Rocquencourt,
[2] IMEDIA Team,undefined
[3] CNAM Paris,undefined
来源
Multimedia Systems | 2008年 / 13卷
关键词
Cross-modal image retrieval; Relevance feedback; Active learning; Semantic indexing;
D O I
暂无
中图分类号
学科分类号
摘要
We address the challenge of semantic gap reduction for image retrieval through an improved support vector machines (SVM)-based active relevance feedback framework, together with a hybrid visual and conceptual content representation and retrieval. We introduce a new feature vector based on projecting the keywords associated to an image on a set of “key concepts” with the help of an external lexical database. We then put forward two improvements of SVM-based relevance feedback method. First, to optimize the transfer of information between the user and the system, we introduce a new active learning selection criterion that minimizes redundancy between the candidate images shown to the user. Second, as most image classes span a wide range of scales in the description space, we argue that the insensitivity of the SVM to the scale of the data is desirable in this context and we show how to obtain it by using specific kernel functions. Experimental evaluations show that the joint use of the new concept-based feature vector and the visual features with our relevance feedback scheme can significantly improve the quality of the results.
引用
收藏
页码:309 / 322
页数:13
相关论文
共 50 条
  • [1] Semantic interactive image retrieval combining visual and conceptual content description
    Ferecatu, Marin
    Boujemaa, Nozha
    Crucianu, Michel
    [J]. MULTIMEDIA SYSTEMS, 2008, 13 (5-6) : 309 - 322
  • [2] Interactive Trademark Image Retrieval by Fusing Semantic and Visual Content
    Rusinol, Marcal
    Aldavert, David
    Karatzas, Dimosthenis
    Toledo, Ricardo
    Llados, Josep
    [J]. ADVANCES IN INFORMATION RETRIEVAL, 2011, 6611 : 314 - 325
  • [3] Combining Semantic and Content Based Image Retrieval in ORDBMS
    Alvez, Carlos E.
    Vecchietti, Aldo R.
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT II, 2010, 6277 : 44 - 53
  • [4] A semantic description for content-based image retrieval
    Wang, Bing
    Mang, Xin
    Zhao, Xiao-Yan
    Zang, Zhi-De
    Zhang, Hong-Xia
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 2466 - +
  • [5] Interactive Semantic Image Retrieval
    Patil, Pushpa B.
    Kokare, Manesh B.
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2013, 9 (03): : 349 - 364
  • [6] Remote-sensing image retrieval by combining image visual and semantic features
    Wang, M.
    Wan, Q. M.
    Gu, L. B.
    Song, T. Y.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (12) : 4200 - 4223
  • [7] Semantic Learning in Interactive Image Retrieval
    Patil, Pushpa B.
    Kokare, Manesh
    [J]. Communications in Computer and Information Science, 2011, 205 M4D : 118 - 127
  • [8] Semantic Learning in Interactive Image Retrieval
    Patil, Pushpa B.
    Kokare, Manesh
    [J]. ADVANCES IN DIGITAL IMAGE PROCESSING AND INFORMATION TECHNOLOGY, 2011, 205 : 118 - +
  • [9] Visual interfaces for a semantic content-based image retrieval system
    Hel-Or, H
    Dori, D
    [J]. STORAGE AND RETRIEVAL FOR MEDIA DATABASES 2003, 2003, 5021 : 1 - 12
  • [10] Semantic kernel learning for interactive image retrieval
    Gosselin, PH
    Cord, M
    [J]. 2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 185 - 188