On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation

被引:0
|
作者
Juan Bory Reyes
Ricardo Abreu Blaya
Ramón Martin Rodríguez Dagnino
Boris Aleksandrovich Kats
机构
[1] Instituto Politécnico Nacional,SEPI
[2] Universidad de Holguín,ESIME
[3] Tecnológico de Monterrey,Zacatenco
[4] Kazan Federal University,Facultad de Informática y Matemática
来源
关键词
Quaternionic analysis; Helmholtz equations; Boundary value problems; Primary 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document}. Our analysis is based on a suitable operator calculus.
引用
收藏
页码:483 / 496
页数:13
相关论文
共 50 条
  • [1] On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
    Bory Reyes, Juan
    Abreu Blaya, Ricardo
    Rodriguez Dagnino, Ramon Martin
    Kats, Boris Aleksandrovich
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 483 - 496
  • [2] Boundary value problems for hyperholomorphic solutions of two dimensional Helmholtz equation in a fractal domain
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    Rodriguez Dagnino, Ramon M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 183 - 191
  • [3] Boundary Value Problems for the Associated Helmholtz Equation
    Kapustin, S. A.
    Raevskii, A. S.
    Raevskii, S. B.
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2020, 65 (11) : 1252 - 1257
  • [4] BOUNDARY VALUE PROBLEMS FOR HELMHOLTZ EQUATION AND THEIR APPLICATIONS
    Maher, Ahmed
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (03)
  • [5] Boundary value problems for the Helmholtz equation in an octant
    Speck, Frank-Olme
    Stephan, Ernst Peter
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (02) : 269 - 300
  • [6] Boundary Value Problems for the Associated Helmholtz Equation
    S. A. Kapustin
    A. S. Raevskii
    S. B. Raevskii
    [J]. Journal of Communications Technology and Electronics, 2020, 65 : 1252 - 1257
  • [7] Boundary Value Problems for the Helmholtz Equation in an Octant
    Frank-Olme Speck
    Ernst Peter Stephan
    [J]. Integral Equations and Operator Theory, 2008, 62 : 269 - 300
  • [8] MIXED BOUNDARY VALUE PROBLEMS FOR THE HELMHOLTZ EQUATION
    Natroshvili, David
    Tsertsvadze, Tornike
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2022, 34 (04) : 475 - 488
  • [9] Two Boundary-Value Problems for the Cauchy–Riemann Equation in a Sector
    Ying Wang
    Yufeng Wang
    [J]. Complex Analysis and Operator Theory, 2012, 6 : 1121 - 1138
  • [10] Mixed Boundary Value Problems for the Helmholtz Equation in a Quadrant
    L. P. Castro
    F. -O. Speck
    F. S. Teixeira
    [J]. Integral Equations and Operator Theory, 2006, 56 : 1 - 44