Data-driven uncertainty quantification in macroscopic traffic flow models

被引:0
|
作者
Alexandra Würth
Mickaël Binois
Paola Goatin
Simone Göttlich
机构
[1] Université Côte d’Azur,Inria Sophia Antipolis
[2] Inria, Méditerranée
[3] CNRS,Department of Mathematics
[4] LJAD,undefined
[5] University of Mannheim,undefined
来源
关键词
Macroscopic traffic flow models; Godunov scheme; Loop detector traffic data; Bayesian calibration; Parameter estimation; Optimization; 35L65; 35R30; 62F15; 76A30;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a Bayesian approach for parameter uncertainty quantification in macroscopic traffic flow models from cross-sectional data. We consider both a simple first order model consisting in the mass conservation equation and its second order version including a speed evolution equation. A bias term is introduced and modeled as a Gaussian process to account for the traffic flow models limitations. We validate the results comparing the error in the macroscopic variables (flow, speed, density) for both models, showing that second order models globally perform better in reconstructing traffic quantities of interest.
引用
收藏
相关论文
共 50 条
  • [1] Data-driven uncertainty quantification in macroscopic traffic flow models
    Wuerth, Alexandra
    Binois, Mickael
    Goatin, Paola
    Goettlich, Simone
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (06)
  • [2] Data-driven models for traffic flow at junctions
    Herty, Michael
    Kolbe, Niklas
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8946 - 8968
  • [3] Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data
    Bertino, Enrico
    Duvigneau, Regis
    Goatin, Paola
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (02) : 1511 - 1533
  • [4] Data-driven uncertainty quantification in computational human head models
    Upadhyay, Kshitiz
    Giovanis, Dimitris G.
    Alshareef, Ahmed
    Knutsen, Andrew K.
    Johnson, Curtis L.
    Carass, Aaron
    Bayly, Philip, V
    Shields, Michael D.
    Ramesh, K. T.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 398
  • [5] Data-driven Uncertainty Quantification for Systematic Coarse-grained Models
    Jin, Tangxin
    Chazirakis, Anthony
    Kalligiannaki, Evangelia
    Harmandaris, Vagelis
    Katsoulakis, Markos A.
    [J]. arXiv, 2020,
  • [6] Data-driven uncertainty quantification for systematic coarse-grained models
    Jin, Tangxin
    Chazirakis, Anthony
    Kalligiannaki, Evangelia
    Harmandaris, Vagelis
    Katsoulakis, Markos A.
    [J]. SOFT MATERIALS, 2020, 18 (2-3) : 348 - 368
  • [7] Behavioral uncertainty quantification for data-driven control
    Padoan, Alberto
    Coulson, Jeremy
    van Waarde, Henk J.
    Lygeros, John
    Dorfler, Florian
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4726 - 4731
  • [8] Uncertainty quantification in data-driven stochastic subspace identification
    Reynders, Edwin P.B.
    [J]. Mechanical Systems and Signal Processing, 2021, 151
  • [9] Bayesian uncertainty quantification for data-driven equation learning
    Martina-Perez, Simon
    Simpson, Matthew J.
    Baker, Ruth E.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2254):
  • [10] A data-driven framework for uncertainty quantification of a fluidized bed
    Kotteda, V. M. Krushnarao
    Kommu, Anitha
    Kumar, Vinod
    [J]. 2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,