Approximate Stabilization of One-dimensional Schrödinger Equations in Inhomogeneous Media

被引:0
|
作者
Jian Zu
机构
[1] Jilin University,College of Mathematics
关键词
Lyapunov stabilization; LaSalle invariance principle; Bilinear ; -dependent; Schrödinger equation; Inhomogeneous media;
D O I
暂无
中图分类号
学科分类号
摘要
We present how to control the bilinear 1D infinite-dimensional Schrödinger equations in inhomogeneous media (with x-dependent coefficients), getting the approximate stabilization around ground state. Our arguments are based on constructing a Lyapunov function and a strategy similar to LaSalle invariance principle.
引用
收藏
页码:758 / 768
页数:10
相关论文
共 50 条
  • [1] Approximate Stabilization of One-dimensional Schrodinger Equations in Inhomogeneous Media
    Zu, Jian
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (03) : 758 - 768
  • [2] The One-Dimensional Schrödinger–Newton Equations
    Philippe Choquard
    Joachim Stubbe
    [J]. Letters in Mathematical Physics, 2007, 81 : 177 - 184
  • [3] Absorbing Boundary Conditions for One-dimensional Nonlinear Schrödinger Equations
    Jérémie Szeftel
    [J]. Numerische Mathematik, 2006, 104 : 103 - 127
  • [4] One-dimensional Schrödinger operator with δ-interactions
    A. S. Kostenko
    M. M. Malamud
    [J]. Functional Analysis and Its Applications, 2010, 44 : 151 - 155
  • [5] The one-dimensional Schrödinger operator with point δ- and δ-interactions
    N. I. Goloshchapova
    L. L. Oridoroga
    [J]. Mathematical Notes, 2008, 84 : 125 - 129
  • [6] Geometric Optics and Long Range Scattering¶for One-Dimensional Nonlinear Schrödinger Equations
    Rémi Carles
    [J]. Communications in Mathematical Physics, 2001, 220 : 41 - 67
  • [7] One-Dimensional Schrödinger Operators with Complex Potentials
    Jan Dereziński
    Vladimir Georgescu
    [J]. Annales Henri Poincaré, 2020, 21 : 1947 - 2008
  • [8] A new approach in handling one-dimensional time-fractional Schrödinger equations
    El-Ajou, Ahmad
    Saadeh, Rania
    Dunia, Moawaih Akhu
    Qazza, Ahmad
    Al-Zhour, Zeyad
    [J]. AIMS MATHEMATICS, 2024, 9 (05): : 10536 - 10560
  • [9] Superconvergence of Local Discontinuous Galerkin Method for One-Dimensional Linear Schrödinger Equations
    Lingling Zhou
    Yan Xu
    Zhimin Zhang
    Waixiang Cao
    [J]. Journal of Scientific Computing, 2017, 73 : 1290 - 1315
  • [10] Stabilization of One-Dimensional Schrödinger Equation Under Joint Feedback Control with Delayed Observation
    K. Y. Yang
    [J]. Journal of Dynamical and Control Systems, 2019, 25 : 275 - 288