Sharp Lower Bound for the First Eigenvalue of the Weighted p-Laplacian I

被引:0
|
作者
Xiaolong Li
Kui Wang
机构
[1] University of California,Department of Mathematics
[2] Irvine,Department of Mathematics and Statistics
[3] McMaster University,School of Mathematical Sciences
[4] Soochow University,undefined
来源
关键词
Eigenvalue estimates; Weighted ; -Laplacian; Bakry–Émery manifolds; and modulus of continuity; Gradient comparison theorem; 35P15; 35P30; 58J50;
D O I
暂无
中图分类号
学科分类号
摘要
We establish sharp lower bounds for the first nonzero eigenvalue of the weighted p-Laplacian with 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p< \infty $$\end{document} on a compact Bakry–Émery manifold (Mn,g,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M^n,g,f)$$\end{document} satisfying Ric+∇2f≥κg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ric}}+\nabla ^2 f \ge \kappa \, g$$\end{document}, provided that either 1<p≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p \le 2$$\end{document} or κ≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \le 0$$\end{document}. For 1<p≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p \le 2$$\end{document}, we provide a simple proof via the modulus of continuity estimates. The proof for the κ≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \le 0$$\end{document} case is based on a sharp gradient comparison theorem for the eigenfunction together with a careful analysis of the underlying one-dimensional model equation.
引用
收藏
页码:8686 / 8708
页数:22
相关论文
共 50 条