Gallucci and Quinn suggested that the product \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {L_\infty } \cdot k $$\end{document} is a sensible index to compare two growth curves (L∞, k the usual Bertalanffy parameters). This paper gives four (interrelated) reasons why this index captures some essential features of body-size growth. It also notes that the product \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ k \cdot L_\infty^3 $$\end{document} directly compares fish growth at the maximum growth rate.