Geometric properties for level sets of quadratic functions

被引:0
|
作者
Huu-Quang Nguyen
Ruey-Lin Sheu
机构
[1] Vinh University,Institute of Natural Science Education
[2] National Cheng Kung University,Department of Mathematics
来源
关键词
-procedure; Separation property; S-lemma with equality; Slater condition; Intermediate value theorem; Control theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study some fundamental geometrical properties related to the S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document}-procedure. Given a pair of quadratic functions (g, f), it asks when “g(x)=0⟹f(x)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x)=0 \Longrightarrow ~ f(x)\ge 0$$\end{document}” can imply “(∃λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exists \lambda \in {\mathbb {R}}$$\end{document}) (∀x∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall x\in {\mathbb {R}}^n$$\end{document}) f(x)+λg(x)≥0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) + \lambda g(x)\ge 0.$$\end{document}” Although the question has been answered by Xia et al. (Math Program 156:513–547, 2016), we propose a neat geometric proof for it (see Theorem 2): the S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document}-procedure holds when, and only when, the level set {g=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{g=0\}$$\end{document} cannot separate the sublevel set {f<0}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f<0\}.$$\end{document} With such a separation property, we proceed to prove that, for two polynomials (g, f) both of degree 2, the image set of g over {f<0},g({f<0})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f<0\}, g(\{f<0\})$$\end{document}, is always connected (see Theorem 4). It implies that the S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document}-procedure is a kind of the intermediate value theorem. As a consequence, we know not only the infimum of g over {f≤0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f\le 0\}$$\end{document}, but the extended results when g over {f≤0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f\le 0\}$$\end{document} is unbounded from below or bounded but unattainable. The robustness and the sensitivity analysis of an optimization problem involving the pair (g, f) automatically follows. All the results in this paper are novel and fundamental in control theory and optimization.
引用
收藏
页码:349 / 369
页数:20
相关论文
共 50 条
  • [1] Geometric properties for level sets of quadratic functions
    Huu-Quang Nguyen
    Sheu, Ruey-Lin
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (02) : 349 - 369
  • [2] A MAXIMUM PRINCIPLE AND GEOMETRIC PROPERTIES OF LEVEL SETS
    COOTZ, TA
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1968, 26 (01) : 39 - +
  • [3] Separating disconnected quadratic level sets by other quadratic level sets
    Nguyen, Huu-Quang
    Chu, Ya-Chi
    Sheu, Ruey-Lin
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2024, 88 (04) : 803 - 829
  • [4] Separating disconnected quadratic level sets by other quadratic level sets
    Huu-Quang Nguyen
    Ya-Chi Chu
    Ruey-Lin Sheu
    [J]. Journal of Global Optimization, 2024, 88 : 803 - 829
  • [5] Properties of the Level Sets of Some Products of Functions
    Brojbeanu, Andi
    Pintea, Cornel
    [J]. JOURNAL OF CONVEX ANALYSIS, 2023, 30 (01) : 271 - 294
  • [6] Topological Properties of Level-Sets of Entire Functions
    Danielyan A.A.
    Schmieder G.
    [J]. Results in Mathematics, 1998, 33 (3-4) : 266 - 273
  • [7] Geometric properties of upper level sets of Lelong numbers on projective spaces
    Coman, Dan
    Truong, Tuyen Trung
    [J]. MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 981 - 994
  • [8] Geometric properties of upper level sets of Lelong numbers on projective spaces
    Dan Coman
    Tuyen Trung Truong
    [J]. Mathematische Annalen, 2015, 361 : 981 - 994
  • [9] Geometric texturing using level sets
    Brodersen, Anders
    Museth, Ken
    Porumbescu, Serban
    Budge, Brian
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (02) : 277 - 288
  • [10] Classification using geometric level sets
    Varshney, Kush R.
    Willsky, Alan S.
    [J]. Journal of Machine Learning Research, 2010, 11 : 491 - 516