Thermophoretic isolation of circulating tumor cells, numerical simulation and design of a microfluidic chip

被引:0
|
作者
Sasan Asiaei
Vahid Darvishi
Mohammad Hossein Davari
Delaram Zohrevandi
Hesam Moghadasi
机构
[1] Iran University of Science and Technology,Sensors and Integrated Bio
关键词
Thermophoresis; Circulating tumor cell; Microfluidics; Separation; Discrete heat sources;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we design a novel microfluidic chip to analyze and simulate the thermophoretic isolation of circulating tumor cells. For the first time, separation of circulating tumor cells from same size peripheral blood cells is examined by thermophoresis. Moreover, a discrete heat source was used to attenuate the separation efficiency, instead of a continuous heat source. Physical properties, such as thermal conductivity, gravity and hydrodynamic forces, were used in numerical design of a microfluidic chip to preferably move white blood cells toward colder walls, due to thermophoresis. To examine the separation process, or differentiated upward migration of cells between the fluid layers, the creeping flow and continuity equations are simultaneously solved along with the constituent forces by FEM modeling. Results show that upon applying a minimum temperature difference of 1 °C, white blood cells are effectively separated from tumor cells, in a 4.5-mm-long microchannel. Maintaining an oscillating/symmetrical temperature gradient in the longitudinal direction minimizes the required separation length of the channel. Moreover, for samples with relatively wide range of size distributions, thermophoresis can robustly separate the analytes, even for the same diameter analytes where the difference in buoyancy or gravity forces is infinitesimal or not present. Such small temperature difference in walls does not denature cells, the overall design is relatively cheap to apply and requires simple fabrication, and the separation is implemented label-free.
引用
收藏
页码:831 / 839
页数:8
相关论文
共 50 条
  • [1] Thermophoretic isolation of circulating tumor cells, numerical simulation and design of a microfluidic chip
    Asiaei, Sasan
    Darvishi, Vahid
    Davari, Mohammad Hossein
    Zohrevandi, Delaram
    Moghadasi, Hesam
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 137 (03) : 831 - 839
  • [2] Numerical simulation of isolation of cancer cells in a microfluidic chip
    Djukic, T.
    Topalovic, M.
    Filipovic, N.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (08)
  • [3] Design of a microfluidic chip for enrichment of circulating tumor cells
    Department of Precision Instrument, Tsinghua University, Beijing
    100084, China
    Key Eng Mat, (1320-1325):
  • [4] Clinical Microfluidic Chip Platform for the Isolation of Versatile Circulating Tumor Cells
    Chen, Hongmei
    Han, Yufeng
    Li, Qingli
    Zou, Yong
    Wang, Shuangshou
    Jiao, Xiaodong
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (200):
  • [5] An integrated microfluidic chip for one-step isolation of circulating tumor cells
    Lee, Tae Yoon
    Hyun, Kyung-A
    Kim, Seung-Il
    Jung, Hyo-Il
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 238 : 1144 - 1150
  • [6] Integrated Microfluidic Chip for Efficient Isolation and Deformability Analysis of Circulating Tumor Cells
    Liu, Zongbin
    Chen, Rui
    Li, Ying
    Liu, Jianqiao
    Wang, Ping
    Xia, Xuefeng
    Qin, Lidong
    ADVANCED BIOSYSTEMS, 2018, 2 (10)
  • [7] Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs)
    Hyun, Kyung-A
    Lee, Tae Yoon
    Lee, Su Hyun
    Jung, Hyo-Il
    BIOSENSORS & BIOELECTRONICS, 2015, 67 : 86 - 92
  • [8] RARE CIRCULATING TUMOR CELLS ISOLATION VIA SPIRAL-DEFORMED MICROFLUIDIC CHIP
    Gou, Yixing
    Ren, Dahai
    You, Zheng
    Sun, Changku
    Wang, Peng
    2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019, : 2286 - 2289
  • [9] Microfluidic platform for circulating tumor cells isolation and detection
    Zhang, Jiahao
    Ren, Jie
    LI, Zirui
    Gou, Yixing
    BIOCELL, 2023, 47 (07) : 1439 - 1447
  • [10] Numerical Simulation of a Lab-on-Chip for Dielectrophoretic Separation of Circulating Tumor Cells
    Alkhaiyat, Abdallah M.
    Badran, Mohamed
    MICROMACHINES, 2023, 14 (09)