Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs: Chordality is the Key to Single-Exponential Parameterized Algorithms

被引:0
|
作者
Édouard Bonnet
Nick Brettell
O-joung Kwon
Dániel Marx
机构
[1] Univ Lyon,Department of Mathematics and Computer Science
[2] CNRS,Department of Mathematics
[3] ENS de Lyon,Institute for Computer Science and Control
[4] Université Claude Bernard Lyon 1,undefined
[5] LIP UMR5668,undefined
[6] Eindhoven University of Technology,undefined
[7] Incheon National University,undefined
[8] Hungarian Academy of Sciences,undefined
[9] (MTA SZTAKI),undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Parameterized complexity; Feedback Vertex Set; Treewidth; Chordal graph;
D O I
暂无
中图分类号
学科分类号
摘要
It has long been known that Feedback Vertex Set can be solved in time 2O(wlogw)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}(w\log w)}n^{{\mathcal {O}}(1)}$$\end{document} on n-vertex graphs of treewidth w, but it was only recently that this running time was improved to 2O(w)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}(w)}n^{{\mathcal {O}}(1)}$$\end{document}, that is, to single-exponential parameterized by treewidth. We investigate which generalizations of Feedback Vertex Set can be solved in a similar running time. Formally, for a class P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} of graphs, the BoundedP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document}-Block Vertex Deletion problem asks, given a graph G on n vertices and positive integers k and d, whether G contains a set S of at most k vertices such that each block of G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has at most d vertices and is in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document}. Assuming that P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} is recognizable in polynomial time and satisfies a certain natural hereditary condition, we give a sharp characterization of when single-exponential parameterized algorithms are possible for fixed values of d:if P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} consists only of chordal graphs, then the problem can be solved in time 2O(wd2)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}(wd^2)} n^{{\mathcal {O}}(1)}$$\end{document},if P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} contains a graph with an induced cycle of length ℓ⩾4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \geqslant 4$$\end{document}, then the problem is not solvable in time 2o(wlogw)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{o(w\log w)} n^{{\mathcal {O}}(1)}$$\end{document} even for fixed d=ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\ell $$\end{document}, unless the ETH fails. We also study a similar problem, called BoundedP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document}-Component Vertex Deletion, where the target graphs have connected components of small size rather than blocks of small size, and we present analogous results. For this problem, we also show that if d is part of the input and P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} contains all chordal graphs, then it cannot be solved in time f(w)no(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)n^{o(w)}$$\end{document} for some function f, unless the ETH fails.
引用
收藏
页码:3890 / 3935
页数:45
相关论文
共 8 条
  • [1] Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs: Chordality is the Key to Single-Exponential Parameterized Algorithms
    Bonnet, Edouard
    Brettell, Nick
    Kwon, O-joung
    Marx, Daniel
    ALGORITHMICA, 2019, 81 (10) : 3890 - 3935
  • [2] Hitting minors on bounded treewidth graphs. II. Single-exponential algorithms
    Baste, Julien
    Sau, Ignasi
    Thilikos, Dimitrios M.
    THEORETICAL COMPUTER SCIENCE, 2020, 814 : 135 - 152
  • [3] Fixed parameterized algorithms for generalized feedback vertex set problems
    Sheng, Bin
    Gutin, Gregory
    THEORETICAL COMPUTER SCIENCE, 2023, 953
  • [4] Deterministic Single Exponential Time Algorithms for Connectivity Problems Parameterized by Treewidth
    Bodlaender, Hans L.
    Cygan, Marek
    Kratsch, Stefan
    Nederlof, Jesper
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2013, 7965 : 196 - 207
  • [5] Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth
    Bodlaender, Hans L.
    Cygan, Marek
    Kratsch, Stefan
    Nederlof, Jesper
    INFORMATION AND COMPUTATION, 2015, 243 : 86 - 111
  • [6] Wannabe Bounded Treewidth Graphs Admit a Polynomial Kernel for Directed Feedback Vertex Set
    Lokshtanov, Daniel
    Ramanujan, Maadapuzhi-sridharan
    Saurabh, Saket
    Sharma, Roohani
    Zehavi, Meirav
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2025, 17 (01)
  • [7] FPT Algorithms for Generalized Feedback Vertex Set Problems
    Sheng, Bin
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2020, 2020, 12337 : 402 - 413
  • [8] Exact and Parameterized Algorithms for Restricted Subset Feedback Vertex Set in Chordal Graphs
    Bai, Tian
    Xiao, Mingyu
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 249 - 261