Stable Ranks of Banach Algebras of Operator-Valued Analytic Functions

被引:0
|
作者
Amol Sasane
机构
[1] London School of Economics,Department of Mathematics
来源
关键词
Primary 30H05; Secondary 47A56, 46J15, 46L80; Bass stable rank; topological stable rank; operator-valued holomorphic functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a separable infinite-dimensional Hilbert space, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H({\mathbb{D}}; {\mathcal{L}}(E))$$ \end{document} denote the algebra of all functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f : {\mathbb{D}} \rightarrow {\mathcal{L}}(E)$$ \end{document} that are holomorphic. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{A}}$$ \end{document} is a subalgebra of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H({\mathbb{D}}; {\mathcal{L}}(E))$$ \end{document} , then using an algebraic result of Corach and Larotonda, we derive that under some conditions, the Bass stable rank of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{A}}$$ \end{document} is infinite. In particular, we deduce that the Bass (and hence topological stable ranks) of the Hardy algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H^{\infty}({\mathbb{D}}; {\mathcal{L}}(E))$$ \end{document}, the disk algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A({\mathbb{D}}; {\mathcal{L}}(E))$$ \end{document} and the Wiener algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$W_{+}({\mathbb{D}}; {\mathcal{L}}(E))$$ \end{document} are all infinite.
引用
收藏
页码:323 / 330
页数:7
相关论文
共 50 条