Dynamical Behavior of the Heroin Epidemic Model on a Finite Weighted Network

被引:0
|
作者
You Zhou
Canrong Tian
Zhi Ling
机构
[1] Yangzhou University,School of Mathematical Science
[2] Yancheng Institute of Technology,School of Mathematics and Physics
关键词
Network; Graph Laplacian; Heroin epidemic; Lyapunov function; 35B40; 35K57; 92B99;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with a heroin epidemic model with relapse on a finite weighted network. The well-posedness of solutions to this problem is investigated. By means of the next-generation matrix method, we define the basic reproduction number on network and give a certain estimate as a threshold parameter by R~0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widetilde{R}_0 $$\end{document} due to the effect of population mobility. Applying Lyapunov functions method, we show that the drug-free equilibrium is globally asymptotically stable if R~0<R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widetilde{R}_0<R_0<1 $$\end{document}, where R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_0 $$\end{document} is the basic reproduction number corresponding to the model without population mobility, while the endemic equilibrium is globally asymptotically stable if R~0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widetilde{R}_0>1 $$\end{document}. Based on this, we deduce that the transmission on network brings more difficulty for the control and prohibition of heroin epidemic. The numerical simulations further illustrate the effect of population mobility on network. The final sensitivity analysis of R~0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widetilde{R}_0 $$\end{document} to the effective contact rate and ratio of seeking treatment reveal that prevention is more effective than treatment for the control of heroin epidemic.
引用
收藏
相关论文
共 50 条
  • [1] Dynamical Behavior of the Heroin Epidemic Model on a Finite Weighted Network
    Zhou, You
    Tian, Canrong
    Ling, Zhi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)
  • [2] Dynamical and nonstandard computational analysis of heroin epidemic model
    Raza, Ali
    Chu, Yu-Ming
    Bajuri, Mohd Yazid
    Ahmadian, Ali
    Ahmed, Nauman
    Rafiq, Muhammad
    Salahshour, Soheil
    RESULTS IN PHYSICS, 2022, 34
  • [3] Dynamical Behavior of an Epidemic Model
    Yong-Jiang Liu
    Li-Mei Zhu
    Ai-Ling Wang
    Biao Wang
    Brazilian Journal of Physics, 2011, 41 : 304 - 308
  • [4] Dynamical Behavior of an Epidemic Model
    Liu, Yong-Jiang
    Zhu, Li-Mei
    Wang, Ai-Ling
    Wang, Biao
    BRAZILIAN JOURNAL OF PHYSICS, 2011, 41 (4-6) : 304 - 308
  • [5] GLOBAL DYNAMICAL ANALYSIS OF A HEROIN EPIDEMIC MODEL ON COMPLEX NETWORKS
    Yang, Junyuan
    Wang, Lianhua
    Li, Xiaoxia
    Zhang, Fengqin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (02): : 429 - 442
  • [6] Dynamical behavior of susceptible-infected-recovered-susceptible epidemic model on weighted networks
    Wu, Qingchu
    Zhang, Fei
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 : 382 - 390
  • [7] Dynamical behavior of a stochastic non-autonomous distributed delay heroin epidemic model with regime-switching
    Zhan, Jinxiang
    Wei, Yongchang
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [8] An Epidemic Spreading Model Based on Dynamical Network
    Zhang, Yi
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2018, : 868 - 877
  • [9] Dynamical Behavior of a Stochastic SIRS Epidemic Model
    Hieu, N. T.
    Du, N. H.
    Auger, P.
    Dane, N. H.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2015, 10 (02) : 56 - 73
  • [10] Dynamical behavior of a stochastic epidemic model for cholera
    Liu, Qun
    Jiang, Daqing
    Hayat, Tasawar
    Alsaedi, Ahmed
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (13): : 7486 - 7514