The Bernstein-Szegö inequality for fractional derivatives of trigonometric polynomials

被引:0
|
作者
V. V. Arestov
P. Yu. Glazyrina
机构
[1] Ural Federal University,Institute of Mathematics and Computer Science
[2] Ural Branch of the Russian Academy of Sciences,Institute of Mathematics and Mechanics
关键词
trigonometric polynomial; Weyl fractional derivative; Bernstein inequality; Szegö inequality;
D O I
暂无
中图分类号
学科分类号
摘要
On the set Fn of trigonometric polynomials of degree n ≥ 1 with complex coefficients, we consider the Szegö operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_\theta ^\alpha $\end{document} defined by the relation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_\theta ^\alpha f_n (t) = \cos \theta D^\alpha f_n (t) - \sin \theta D^\alpha \tilde f_n (t)$\end{document} for α, θ ∈ ℝ, where α ≥ 0. Here, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^\alpha f_n $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^\alpha \tilde f_n $\end{document} are the Weyl fractional derivatives of (real) order α of the polynomial fn and of its conjugate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde f_n $\end{document}. In particular, we prove that, if α ≥ n ln 2n, then, for any θ ∈ ℝ, the sharp inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left\| {\cos \theta D^\alpha f_n - \sin \theta D^\alpha f_n } \right\|_{L_p } \leqslant n^\alpha \left\| {f_n } \right\|_{L_p } $\end{document} holds on the set Fn in the spaces Lp for all p ≥ 0. For classical derivatives (of integer order α ≥ 1), this inequality was obtained by Szegö in the uniform norm (p = ∞) in 1928 and by Zygmund for 1 ≤ p < ∞ in 1931–1935. For fractional derivatives of (real) order α ≥ 1 and 1 ≤ p ≤ ∞, the inequality was proved by Kozko in 1998.
引用
收藏
页码:13 / 28
页数:15
相关论文
共 50 条