Multiplicity and uniqueness of positive solutions for nonhomogeneous semilinear elliptic equation with critical exponent

被引:0
|
作者
Na Ba
Yan-yan Wang
Lie Zheng
机构
[1] Hubei University of Technology,School of Science
[2] Zhoukou Normal University,Department of Mathematics
[3] Hubei University of Technology,School of Science
来源
Acta Mathematicae Applicatae Sinica, English Series | 2016年 / 32卷
关键词
nonhomogeneous semilinear elliptic problems; multiplicity; uniqueness; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {\begin{array}{*{20}{c}}{ - \Delta u\left( x \right) + u\left( x \right) = \lambda \left( {{u^p}\left( x \right) + h\left( x \right)} \right),\;x \in {\mathbb{R}^N},} \\ {u\left( x \right) \in {H^1}\left( {{\mathbb{R}^N}} \right),\;u\left( x \right) \succ 0,\;x \in {\mathbb{R}^N},\;} \end{array}} \right.\;\left( * \right)$$\end{document}, where λ > 0 is a parameter, p = (N+2)/(N−2). We will prove that there exists a positive constant 0 < λ* < +∞ such that (*) has a minimal positive solution for λ ∈ (0, λ*), no solution for λ > λ*, a unique solution for λ = λ*. Furthermore, (*) possesses at least two positive solutions when λ ∈ (0, λ*) and 3 ≤ N ≤ 5. For N ≥ 6, under some monotonicity conditions of h we show that there exists a constant 0 < λ** < λ* such that problem (*) possesses a unique solution for λ ∈ (0, λ**).
引用
收藏
页码:81 / 94
页数:13
相关论文
共 50 条