Hyers–Ulam Stability of General Jensen-Type Mappings in Banach Algebras

被引:0
|
作者
Gang Lu
Choonkil Park
机构
[1] ShenYang University of Technology,Department of Mathematics, School of Science
[2] Hanyang University,Department of Mathematics, Research Institute for Natural Sciences
来源
Results in Mathematics | 2014年 / 66卷
关键词
Primary 39B62; 39B52; 46B25; Jensen-type mapping; Hyers–Ulam stability; homomorphism; derivation; complex Banach algebra; complex Banach lie algebra; hyperstability;
D O I
暂无
中图分类号
学科分类号
摘要
Using the fixed point method, we prove the Hyers–Ulam stability of homomorphisms in complex Banach algebras and complex Banach Lie algebras and also of derivations on complex Banach algebras and complex Banach Lie algebras for the general Jensen-type functional equation f(αx + βy) + f(αx − βy) = 2αf(x) for any α,β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha, \beta \in \mathbb{R}}$$\end{document} with α,β≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha, \beta \neq 0}$$\end{document}. Furthermore, we prove the hyperstability of homomorphisms in complex Banach algebras for the above functional equation with α = β = 1.
引用
收藏
页码:385 / 404
页数:19
相关论文
共 50 条